ETH Price: $2,423.59 (+0.29%)

Token

Ether (ETH)

Overview

Max Total Supply

112,686.72553293077713423 ETH

Holders

7,574,544

Market

Price

$2,423.01 @ 0.999763 ETH (+0.12%)

Onchain Market Cap

$273,041,214.51

Circulating Supply Market Cap

$291,578,818,864.85

Other Info

Token Contract (WITH 18 Decimals)

Balance
0.036541522409707294 ETH

Value
$88.54 ( ~0.0365326559622116 ETH) [0.0000%]
0xac381d0716eb94dc88e82a15fdff7f630fb8041e
Loading...
Loading
Loading...
Loading
Loading...
Loading

OVERVIEW

Ethereum is a global, open-source platform for decentralized applications. Eth is fueling transactions on the Chain.

Market

Volume (24H):$7,369,992,007.91
Market Capitalization:$291,578,818,864.85
Circulating Supply:120,337,372.00 ETH
Market Data Source: Coinmarketcap

Contract Source Code Verified (Exact Match)

Contract Name:
L2EthToken

Compiler Version
v0.8.20+commit.a1b79de6

ZkSolc Version
v1.5.0

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 27 : L2BaseToken.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

import {IBaseToken} from "./interfaces/IBaseToken.sol";
import {ISystemContract} from "./interfaces/ISystemContract.sol";
import {MSG_VALUE_SYSTEM_CONTRACT, DEPLOYER_SYSTEM_CONTRACT, BOOTLOADER_FORMAL_ADDRESS, L1_MESSENGER_CONTRACT} from "./Constants.sol";
import {IMailbox} from "./interfaces/IMailbox.sol";

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice Native ETH contract.
 * @dev It does NOT provide interfaces for personal interaction with tokens like `transfer`, `approve`, and `transferFrom`.
 * Instead, this contract is used by the bootloader and `MsgValueSimulator`/`ContractDeployer` system contracts
 * to perform the balance changes while simulating the `msg.value` Ethereum behavior.
 */
contract L2BaseToken is IBaseToken, ISystemContract {
    /// @notice The balances of the users.
    mapping(address account => uint256 balance) internal balance;

    /// @notice The total amount of tokens that have been minted.
    uint256 public override totalSupply;

    /// @notice Transfer tokens from one address to another.
    /// @param _from The address to transfer the ETH from.
    /// @param _to The address to transfer the ETH to.
    /// @param _amount The amount of ETH in wei being transferred.
    /// @dev This function can be called only by trusted system contracts.
    /// @dev This function also emits "Transfer" event, which might be removed
    /// later on.
    function transferFromTo(address _from, address _to, uint256 _amount) external override {
        require(
            msg.sender == MSG_VALUE_SYSTEM_CONTRACT ||
                msg.sender == address(DEPLOYER_SYSTEM_CONTRACT) ||
                msg.sender == BOOTLOADER_FORMAL_ADDRESS,
            "Only system contracts with special access can call this method"
        );

        uint256 fromBalance = balance[_from];
        require(fromBalance >= _amount, "Transfer amount exceeds balance");
        unchecked {
            balance[_from] = fromBalance - _amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            balance[_to] += _amount;
        }

        emit Transfer(_from, _to, _amount);
    }

    /// @notice Returns ETH balance of an account
    /// @dev It takes `uint256` as an argument to be able to properly simulate the behaviour of the
    /// Ethereum's `BALANCE` opcode that accepts uint256 as an argument and truncates any upper bits
    /// @param _account The address of the account to return the balance of.
    function balanceOf(uint256 _account) external view override returns (uint256) {
        return balance[address(uint160(_account))];
    }

    /// @notice Increase the total supply of tokens and balance of the receiver.
    /// @dev This method is only callable by the bootloader.
    /// @param _account The address which to mint the funds to.
    /// @param _amount The amount of ETH in wei to be minted.
    function mint(address _account, uint256 _amount) external override onlyCallFromBootloader {
        totalSupply += _amount;
        balance[_account] += _amount;
        emit Mint(_account, _amount);
    }

    /// @notice Initiate the withdrawal of the base token, funds will be available to claim on L1 `finalizeEthWithdrawal` method.
    /// @param _l1Receiver The address on L1 to receive the funds.
    function withdraw(address _l1Receiver) external payable override {
        uint256 amount = _burnMsgValue();

        // Send the L2 log, a user could use it as proof of the withdrawal
        bytes memory message = _getL1WithdrawMessage(_l1Receiver, amount);
        L1_MESSENGER_CONTRACT.sendToL1(message);

        emit Withdrawal(msg.sender, _l1Receiver, amount);
    }

    /// @notice Initiate the withdrawal of the base token, with the sent message. The funds will be available to claim on L1 `finalizeEthWithdrawal` method.
    /// @param _l1Receiver The address on L1 to receive the funds.
    /// @param _additionalData Additional data to be sent to L1 with the withdrawal.
    function withdrawWithMessage(address _l1Receiver, bytes memory _additionalData) external payable override {
        uint256 amount = _burnMsgValue();

        // Send the L2 log, a user could use it as proof of the withdrawal
        bytes memory message = _getExtendedWithdrawMessage(_l1Receiver, amount, msg.sender, _additionalData);
        L1_MESSENGER_CONTRACT.sendToL1(message);

        emit WithdrawalWithMessage(msg.sender, _l1Receiver, amount, _additionalData);
    }

    /// @dev The function burn the sent `msg.value`.
    /// NOTE: Since this contract holds the mapping of all ether balances of the system,
    /// the sent `msg.value` is added to the `this` balance before the call.
    /// So the balance of `address(this)` is always bigger or equal to the `msg.value`!
    function _burnMsgValue() internal returns (uint256 amount) {
        amount = msg.value;

        // Silent burning of the ether
        unchecked {
            // This is safe, since this contract holds the ether balances, and if user
            // sends a `msg.value` it will be added to the contract (`this`) balance.
            balance[address(this)] -= amount;
            totalSupply -= amount;
        }
    }

    /// @dev Get the message to be sent to L1 to initiate a withdrawal.
    function _getL1WithdrawMessage(address _to, uint256 _amount) internal pure returns (bytes memory) {
        return abi.encodePacked(IMailbox.finalizeEthWithdrawal.selector, _to, _amount);
    }

    /// @dev Get the message to be sent to L1 to initiate a withdrawal.
    function _getExtendedWithdrawMessage(
        address _to,
        uint256 _amount,
        address _sender,
        bytes memory _additionalData
    ) internal pure returns (bytes memory) {
        // solhint-disable-next-line func-named-parameters
        return abi.encodePacked(IMailbox.finalizeEthWithdrawal.selector, _to, _amount, _sender, _additionalData);
    }

    /// @dev This method has not been stabilized and might be
    /// removed later on.
    function name() external pure override returns (string memory) {
        return "Ether";
    }

    /// @dev This method has not been stabilized and might be
    /// removed later on.
    function symbol() external pure override returns (string memory) {
        return "ETH";
    }

    /// @dev This method has not been stabilized and might be
    /// removed later on.
    function decimals() external pure override returns (uint8) {
        return 18;
    }
}

File 2 of 27 : IBaseToken.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

interface IBaseToken {
    function balanceOf(uint256) external view returns (uint256);

    function transferFromTo(address _from, address _to, uint256 _amount) external;

    function totalSupply() external view returns (uint256);

    function name() external pure returns (string memory);

    function symbol() external pure returns (string memory);

    function decimals() external pure returns (uint8);

    function mint(address _account, uint256 _amount) external;

    function withdraw(address _l1Receiver) external payable;

    function withdrawWithMessage(address _l1Receiver, bytes calldata _additionalData) external payable;

    event Mint(address indexed account, uint256 amount);

    event Transfer(address indexed from, address indexed to, uint256 value);

    event Withdrawal(address indexed _l2Sender, address indexed _l1Receiver, uint256 _amount);

    event WithdrawalWithMessage(
        address indexed _l2Sender,
        address indexed _l1Receiver,
        uint256 _amount,
        bytes _additionalData
    );
}

File 3 of 27 : ISystemContract.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

import {SystemContractHelper} from "../libraries/SystemContractHelper.sol";
import {BOOTLOADER_FORMAL_ADDRESS, FORCE_DEPLOYER} from "../Constants.sol";

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice An abstract contract that is used to reuse modifiers across the system contracts.
 * @dev Solidity does not allow exporting modifiers via libraries, so
 * the only way to do reuse modifiers is to have a base contract
 * @dev Never add storage variables into this contract as some
 * system contracts rely on this abstract contract as on interface!
 */
abstract contract ISystemContract {
    /// @notice Modifier that makes sure that the method
    /// can only be called via a system call.
    modifier onlySystemCall() {
        require(
            SystemContractHelper.isSystemCall() || SystemContractHelper.isSystemContract(msg.sender),
            "This method require system call flag"
        );
        _;
    }

    /// @notice Modifier that makes sure that the method
    /// can only be called from a system contract.
    modifier onlyCallFromSystemContract() {
        require(
            SystemContractHelper.isSystemContract(msg.sender),
            "This method require the caller to be system contract"
        );
        _;
    }

    /// @notice Modifier that makes sure that the method
    /// can only be called from a special given address.
    modifier onlyCallFrom(address caller) {
        require(msg.sender == caller, "Inappropriate caller");
        _;
    }

    /// @notice Modifier that makes sure that the method
    /// can only be called from the bootloader.
    modifier onlyCallFromBootloader() {
        require(msg.sender == BOOTLOADER_FORMAL_ADDRESS, "Callable only by the bootloader");
        _;
    }

    /// @notice Modifier that makes sure that the method
    /// can only be called from the L1 force deployer.
    modifier onlyCallFromForceDeployer() {
        require(msg.sender == FORCE_DEPLOYER);
        _;
    }
}

File 4 of 27 : Constants.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

import {IAccountCodeStorage} from "./interfaces/IAccountCodeStorage.sol";
import {INonceHolder} from "./interfaces/INonceHolder.sol";
import {IContractDeployer} from "./interfaces/IContractDeployer.sol";
import {IKnownCodesStorage} from "./interfaces/IKnownCodesStorage.sol";
import {IImmutableSimulator} from "./interfaces/IImmutableSimulator.sol";
import {IBaseToken} from "./interfaces/IBaseToken.sol";
import {IL1Messenger} from "./interfaces/IL1Messenger.sol";
import {ISystemContext} from "./interfaces/ISystemContext.sol";
import {ICompressor} from "./interfaces/ICompressor.sol";
import {IComplexUpgrader} from "./interfaces/IComplexUpgrader.sol";
import {IBootloaderUtilities} from "./interfaces/IBootloaderUtilities.sol";
import {IPubdataChunkPublisher} from "./interfaces/IPubdataChunkPublisher.sol";

/// @dev All the system contracts introduced by zkSync have their addresses
/// started from 2^15 in order to avoid collision with Ethereum precompiles.
uint160 constant SYSTEM_CONTRACTS_OFFSET = 0x8000; // 2^15

/// @dev Unlike the value above, it is not overridden for the purpose of testing and
/// is identical to the constant value actually used as the system contracts offset on
/// mainnet.
uint160 constant REAL_SYSTEM_CONTRACTS_OFFSET = 0x8000;

/// @dev All the system contracts must be located in the kernel space,
/// i.e. their addresses must be below 2^16.
uint160 constant MAX_SYSTEM_CONTRACT_ADDRESS = 0xffff; // 2^16 - 1

address constant ECRECOVER_SYSTEM_CONTRACT = address(0x01);
address constant SHA256_SYSTEM_CONTRACT = address(0x02);
address constant ECADD_SYSTEM_CONTRACT = address(0x06);
address constant ECMUL_SYSTEM_CONTRACT = address(0x07);
address constant ECPAIRING_SYSTEM_CONTRACT = address(0x08);


/// @dev The number of ergs that need to be spent for a single byte of pubdata regardless of the pubdata price.
/// This variable is used to ensure the following:
/// - That the long-term storage of the operator is compensated properly.
/// - That it is not possible that the pubdata counter grows too high without spending proportional amount of computation.
uint256 constant COMPUTATIONAL_PRICE_FOR_PUBDATA = 80;

/// @dev The maximal possible address of an L1-like precompie. These precompiles maintain the following properties:
/// - Their extcodehash is EMPTY_STRING_KECCAK
/// - Their extcodesize is 0 despite having a bytecode formally deployed there.
uint256 constant CURRENT_MAX_PRECOMPILE_ADDRESS = 0xff;

address payable constant BOOTLOADER_FORMAL_ADDRESS = payable(address(SYSTEM_CONTRACTS_OFFSET + 0x01));
IAccountCodeStorage constant ACCOUNT_CODE_STORAGE_SYSTEM_CONTRACT = IAccountCodeStorage(
    address(SYSTEM_CONTRACTS_OFFSET + 0x02)
);
INonceHolder constant NONCE_HOLDER_SYSTEM_CONTRACT = INonceHolder(address(SYSTEM_CONTRACTS_OFFSET + 0x03));
IKnownCodesStorage constant KNOWN_CODE_STORAGE_CONTRACT = IKnownCodesStorage(address(SYSTEM_CONTRACTS_OFFSET + 0x04));
IImmutableSimulator constant IMMUTABLE_SIMULATOR_SYSTEM_CONTRACT = IImmutableSimulator(
    address(SYSTEM_CONTRACTS_OFFSET + 0x05)
);
IContractDeployer constant DEPLOYER_SYSTEM_CONTRACT = IContractDeployer(address(SYSTEM_CONTRACTS_OFFSET + 0x06));
IContractDeployer constant REAL_DEPLOYER_SYSTEM_CONTRACT = IContractDeployer(address(REAL_SYSTEM_CONTRACTS_OFFSET + 0x06));

// A contract that is allowed to deploy any codehash
// on any address. To be used only during an upgrade.
address constant FORCE_DEPLOYER = address(SYSTEM_CONTRACTS_OFFSET + 0x07);
IL1Messenger constant L1_MESSENGER_CONTRACT = IL1Messenger(address(SYSTEM_CONTRACTS_OFFSET + 0x08));
address constant MSG_VALUE_SYSTEM_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x09);

IBaseToken constant BASE_TOKEN_SYSTEM_CONTRACT = IBaseToken(address(SYSTEM_CONTRACTS_OFFSET + 0x0a));
IBaseToken constant REAL_BASE_TOKEN_SYSTEM_CONTRACT = IBaseToken(address(REAL_SYSTEM_CONTRACTS_OFFSET + 0x0a));

// Hardcoded because even for tests we should keep the address. (Instead `SYSTEM_CONTRACTS_OFFSET + 0x10`)
// Precompile call depends on it.
// And we don't want to mock this contract.
address constant KECCAK256_SYSTEM_CONTRACT = address(0x8010);

ISystemContext constant SYSTEM_CONTEXT_CONTRACT = ISystemContext(payable(address(SYSTEM_CONTRACTS_OFFSET + 0x0b)));
ISystemContext constant REAL_SYSTEM_CONTEXT_CONTRACT = ISystemContext(payable(address(REAL_SYSTEM_CONTRACTS_OFFSET + 0x0b)));

IBootloaderUtilities constant BOOTLOADER_UTILITIES = IBootloaderUtilities(address(SYSTEM_CONTRACTS_OFFSET + 0x0c));

// It will be a different value for tests, while shouldn't. But for now, this constant is not used by other contracts, so that's fine.
address constant EVENT_WRITER_CONTRACT = address(SYSTEM_CONTRACTS_OFFSET + 0x0d);

ICompressor constant COMPRESSOR_CONTRACT = ICompressor(address(SYSTEM_CONTRACTS_OFFSET + 0x0e));

IComplexUpgrader constant COMPLEX_UPGRADER_CONTRACT = IComplexUpgrader(address(SYSTEM_CONTRACTS_OFFSET + 0x0f));

IPubdataChunkPublisher constant PUBDATA_CHUNK_PUBLISHER = IPubdataChunkPublisher(
    address(SYSTEM_CONTRACTS_OFFSET + 0x11)
);

/// @dev If the bitwise AND of the extraAbi[2] param when calling the MSG_VALUE_SIMULATOR
/// is non-zero, the call will be assumed to be a system one.
uint256 constant MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT = 1;

/// @dev The maximal msg.value that context can have
uint256 constant MAX_MSG_VALUE = type(uint128).max;

/// @dev Prefix used during derivation of account addresses using CREATE2
/// @dev keccak256("zksyncCreate2")
bytes32 constant CREATE2_PREFIX = 0x2020dba91b30cc0006188af794c2fb30dd8520db7e2c088b7fc7c103c00ca494;
/// @dev Prefix used during derivation of account addresses using CREATE
/// @dev keccak256("zksyncCreate")
bytes32 constant CREATE_PREFIX = 0x63bae3a9951d38e8a3fbb7b70909afc1200610fc5bc55ade242f815974674f23;

/// @dev Each state diff consists of 156 bytes of actual data and 116 bytes of unused padding, needed for circuit efficiency.
uint256 constant STATE_DIFF_ENTRY_SIZE = 272;

enum SystemLogKey {
    L2_TO_L1_LOGS_TREE_ROOT_KEY,
    TOTAL_L2_TO_L1_PUBDATA_KEY,
    STATE_DIFF_HASH_KEY,
    PACKED_BATCH_AND_L2_BLOCK_TIMESTAMP_KEY,
    PREV_BATCH_HASH_KEY,
    CHAINED_PRIORITY_TXN_HASH_KEY,
    NUMBER_OF_LAYER_1_TXS_KEY,
    BLOB_ONE_HASH_KEY,
    BLOB_TWO_HASH_KEY,
    BLOB_THREE_HASH_KEY,
    BLOB_FOUR_HASH_KEY,
    BLOB_FIVE_HASH_KEY,
    BLOB_SIX_HASH_KEY,
    EXPECTED_SYSTEM_CONTRACT_UPGRADE_TX_HASH_KEY
}

/// @dev The number of leaves in the L2->L1 log Merkle tree.
/// While formally a tree of any length is acceptable, the node supports only a constant length of 16384 leaves.
uint256 constant L2_TO_L1_LOGS_MERKLE_TREE_LEAVES = 16_384;

/// @dev The length of the derived key in bytes inside compressed state diffs.
uint256 constant DERIVED_KEY_LENGTH = 32;
/// @dev The length of the enum index in bytes inside compressed state diffs.
uint256 constant ENUM_INDEX_LENGTH = 8;
/// @dev The length of value in bytes inside compressed state diffs.
uint256 constant VALUE_LENGTH = 32;

/// @dev The length of the compressed initial storage write in bytes.
uint256 constant COMPRESSED_INITIAL_WRITE_SIZE = DERIVED_KEY_LENGTH + VALUE_LENGTH;
/// @dev The length of the compressed repeated storage write in bytes.
uint256 constant COMPRESSED_REPEATED_WRITE_SIZE = ENUM_INDEX_LENGTH + VALUE_LENGTH;

/// @dev The position from which the initial writes start in the compressed state diffs.
uint256 constant INITIAL_WRITE_STARTING_POSITION = 4;

/// @dev Each storage diffs consists of the following elements:
/// [20bytes address][32bytes key][32bytes derived key][8bytes enum index][32bytes initial value][32bytes final value]
/// @dev The offset of the derived key in a storage diff.
uint256 constant STATE_DIFF_DERIVED_KEY_OFFSET = 52;
/// @dev The offset of the enum index in a storage diff.
uint256 constant STATE_DIFF_ENUM_INDEX_OFFSET = 84;
/// @dev The offset of the final value in a storage diff.
uint256 constant STATE_DIFF_FINAL_VALUE_OFFSET = 124;

/// @dev Total number of bytes in a blob. Blob = 4096 field elements * 31 bytes per field element
/// @dev EIP-4844 defines it as 131_072 but we use 4096 * 31 within our circuits to always fit within a field element
/// @dev Our circuits will prove that a EIP-4844 blob and our internal blob are the same.
uint256 constant BLOB_SIZE_BYTES = 126_976;

/// @dev Max number of blobs currently supported
uint256 constant MAX_NUMBER_OF_BLOBS = 6;

File 5 of 27 : IMailbox.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

interface IMailbox {
    function finalizeEthWithdrawal(
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBlock,
        bytes calldata _message,
        bytes32[] calldata _merkleProof
    ) external;
}

File 6 of 27 : SystemContractHelper.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

import {MAX_SYSTEM_CONTRACT_ADDRESS} from "../Constants.sol";

import {CALLFLAGS_CALL_ADDRESS, CODE_ADDRESS_CALL_ADDRESS, EVENT_WRITE_ADDRESS, EVENT_INITIALIZE_ADDRESS, GET_EXTRA_ABI_DATA_ADDRESS, LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS, META_CODE_SHARD_ID_OFFSET, META_CALLER_SHARD_ID_OFFSET, META_SHARD_ID_OFFSET, META_AUX_HEAP_SIZE_OFFSET, META_HEAP_SIZE_OFFSET, META_PUBDATA_PUBLISHED_OFFSET, META_CALL_ADDRESS, PTR_CALLDATA_CALL_ADDRESS, PTR_ADD_INTO_ACTIVE_CALL_ADDRESS, PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS, PTR_PACK_INTO_ACTIVE_CALL_ADDRESS, PRECOMPILE_CALL_ADDRESS, SET_CONTEXT_VALUE_CALL_ADDRESS, TO_L1_CALL_ADDRESS} from "./SystemContractsCaller.sol";

uint256 constant UINT32_MASK = type(uint32).max;
uint256 constant UINT64_MASK = type(uint64).max;
uint256 constant UINT128_MASK = type(uint128).max;
uint256 constant ADDRESS_MASK = type(uint160).max;

/// @notice NOTE: The `getZkSyncMeta` that is used to obtain this struct will experience a breaking change in 2024.
struct ZkSyncMeta {
    uint32 pubdataPublished;
    uint32 heapSize;
    uint32 auxHeapSize;
    uint8 shardId;
    uint8 callerShardId;
    uint8 codeShardId;
}

enum Global {
    CalldataPtr,
    CallFlags,
    ExtraABIData1,
    ExtraABIData2,
    ReturndataPtr
}

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice Library used for accessing zkEVM-specific opcodes, needed for the development
 * of system contracts.
 * @dev While this library will be eventually available to public, some of the provided
 * methods won't work for non-system contracts and also breaking changes at short notice are possible.
 * We do not recommend this library for external use.
 */
library SystemContractHelper {
    /// @notice Send an L2Log to L1.
    /// @param _isService The `isService` flag.
    /// @param _key The `key` part of the L2Log.
    /// @param _value The `value` part of the L2Log.
    /// @dev The meaning of all these parameters is context-dependent, but they
    /// have no intrinsic meaning per se.
    function toL1(bool _isService, bytes32 _key, bytes32 _value) internal {
        address callAddr = TO_L1_CALL_ADDRESS;
        assembly {
            // Ensuring that the type is bool
            _isService := and(_isService, 1)
            // This `success` is always 0, but the method always succeeds
            // (except for the cases when there is not enough gas)
            // solhint-disable-next-line no-unused-vars
            let success := call(_isService, callAddr, _key, _value, 0xFFFF, 0, 0)
        }
    }

    /// @notice Get address of the currently executed code.
    /// @dev This allows differentiating between `call` and `delegatecall`.
    /// During the former `this` and `codeAddress` are the same, while
    /// during the latter they are not.
    function getCodeAddress() internal view returns (address addr) {
        address callAddr = CODE_ADDRESS_CALL_ADDRESS;
        assembly {
            addr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Provide a compiler hint, by placing calldata fat pointer into virtual `ACTIVE_PTR`,
    /// that can be manipulated by `ptr.add`/`ptr.sub`/`ptr.pack`/`ptr.shrink` later.
    /// @dev This allows making a call by forwarding calldata pointer to the child call.
    /// It is a much more efficient way to forward calldata, than standard EVM bytes copying.
    function loadCalldataIntoActivePtr() internal view {
        address callAddr = LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS;
        assembly {
            pop(staticcall(0, callAddr, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice Compiler simulation of the `ptr.pack` opcode for the virtual `ACTIVE_PTR` pointer.
    /// @dev Do the concatenation between lowest part of `ACTIVE_PTR` and highest part of `_farCallAbi`
    /// forming packed fat pointer for a far call or ret ABI when necessary.
    /// Note: Panics if the lowest 128 bits of `_farCallAbi` are not zeroes.
    function ptrPackIntoActivePtr(uint256 _farCallAbi) internal view {
        address callAddr = PTR_PACK_INTO_ACTIVE_CALL_ADDRESS;
        assembly {
            pop(staticcall(_farCallAbi, callAddr, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice Compiler simulation of the `ptr.add` opcode for the virtual `ACTIVE_PTR` pointer.
    /// @dev Transforms `ACTIVE_PTR.offset` into `ACTIVE_PTR.offset + u32(_value)`. If overflow happens then it panics.
    function ptrAddIntoActive(uint32 _value) internal view {
        address callAddr = PTR_ADD_INTO_ACTIVE_CALL_ADDRESS;
        uint256 cleanupMask = UINT32_MASK;
        assembly {
            // Clearing input params as they are not cleaned by Solidity by default
            _value := and(_value, cleanupMask)
            pop(staticcall(_value, callAddr, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice Compiler simulation of the `ptr.shrink` opcode for the virtual `ACTIVE_PTR` pointer.
    /// @dev Transforms `ACTIVE_PTR.length` into `ACTIVE_PTR.length - u32(_shrink)`. If underflow happens then it panics.
    function ptrShrinkIntoActive(uint32 _shrink) internal view {
        address callAddr = PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS;
        uint256 cleanupMask = UINT32_MASK;
        assembly {
            // Clearing input params as they are not cleaned by Solidity by default
            _shrink := and(_shrink, cleanupMask)
            pop(staticcall(_shrink, callAddr, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice packs precompile parameters into one word
    /// @param _inputMemoryOffset The memory offset in 32-byte words for the input data for calling the precompile.
    /// @param _inputMemoryLength The length of the input data in words.
    /// @param _outputMemoryOffset The memory offset in 32-byte words for the output data.
    /// @param _outputMemoryLength The length of the output data in words.
    /// @param _perPrecompileInterpreted The constant, the meaning of which is defined separately for
    /// each precompile. For information, please read the documentation of the precompilecall log in
    /// the VM.
    function packPrecompileParams(
        uint32 _inputMemoryOffset,
        uint32 _inputMemoryLength,
        uint32 _outputMemoryOffset,
        uint32 _outputMemoryLength,
        uint64 _perPrecompileInterpreted
    ) internal pure returns (uint256 rawParams) {
        rawParams = _inputMemoryOffset;
        rawParams |= uint256(_inputMemoryLength) << 32;
        rawParams |= uint256(_outputMemoryOffset) << 64;
        rawParams |= uint256(_outputMemoryLength) << 96;
        rawParams |= uint256(_perPrecompileInterpreted) << 192;
    }

    /// @notice Call precompile with given parameters.
    /// @param _rawParams The packed precompile params. They can be retrieved by
    /// the `packPrecompileParams` method.
    /// @param _gasToBurn The number of gas to burn during this call.
    /// @param _pubdataToSpend The number of pubdata bytes to burn during the call.
    /// @return success Whether the call was successful.
    /// @dev The list of currently available precompiles sha256, keccak256, ecrecover.
    /// NOTE: The precompile type depends on `this` which calls precompile, which means that only
    /// system contracts corresponding to the list of precompiles above can do `precompileCall`.
    /// @dev If used not in the `sha256`, `keccak256` or `ecrecover` contracts, it will just burn the gas provided.
    /// @dev This method is `unsafe` because it does not check whether there is enough gas to burn.
    function unsafePrecompileCall(
        uint256 _rawParams,
        uint32 _gasToBurn,
        uint32 _pubdataToSpend
    ) internal view returns (bool success) {
        address callAddr = PRECOMPILE_CALL_ADDRESS;

        uint256 params = uint256(_gasToBurn) + (uint256(_pubdataToSpend) << 32);

        uint256 cleanupMask = UINT64_MASK;
        assembly {
            // Clearing input params as they are not cleaned by Solidity by default
            params := and(params, cleanupMask)
            success := staticcall(_rawParams, callAddr, params, 0xFFFF, 0, 0)
        }
    }

    /// @notice Set `msg.value` to next far call.
    /// @param _value The msg.value that will be used for the *next* call.
    /// @dev If called not in kernel mode, it will result in a revert (enforced by the VM)
    function setValueForNextFarCall(uint128 _value) internal returns (bool success) {
        uint256 cleanupMask = UINT128_MASK;
        address callAddr = SET_CONTEXT_VALUE_CALL_ADDRESS;
        assembly {
            // Clearing input params as they are not cleaned by Solidity by default
            _value := and(_value, cleanupMask)
            success := call(0, callAddr, _value, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Initialize a new event.
    /// @param initializer The event initializing value.
    /// @param value1 The first topic or data chunk.
    function eventInitialize(uint256 initializer, uint256 value1) internal {
        address callAddr = EVENT_INITIALIZE_ADDRESS;
        assembly {
            pop(call(initializer, callAddr, value1, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice Continue writing the previously initialized event.
    /// @param value1 The first topic or data chunk.
    /// @param value2 The second topic or data chunk.
    function eventWrite(uint256 value1, uint256 value2) internal {
        address callAddr = EVENT_WRITE_ADDRESS;
        assembly {
            pop(call(value1, callAddr, value2, 0, 0xFFFF, 0, 0))
        }
    }

    /// @notice Get the packed representation of the `ZkSyncMeta` from the current context.
    /// @notice NOTE: The behavior of this function will experience a breaking change in 2024.
    /// @return meta The packed representation of the ZkSyncMeta.
    /// @dev The fields in ZkSyncMeta are NOT tightly packed, i.e. there is a special rule on how
    /// they are packed. For more information, please read the documentation on ZkSyncMeta.
    function getZkSyncMetaBytes() internal view returns (uint256 meta) {
        address callAddr = META_CALL_ADDRESS;
        assembly {
            meta := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Returns the bits [offset..offset+size-1] of the meta.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @param offset The offset of the bits.
    /// @param size The size of the extracted number in bits.
    /// @return result The extracted number.
    function extractNumberFromMeta(uint256 meta, uint256 offset, uint256 size) internal pure returns (uint256 result) {
        // Firstly, we delete all the bits after the field
        uint256 shifted = (meta << (256 - size - offset));
        // Then we shift everything back
        result = (shifted >> (256 - size));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of pubdata
    /// bytes published in the batch so far.
    /// @notice NOTE: The behavior of this function will experience a breaking change in 2024.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return pubdataPublished The amount of pubdata published in the system so far.
    function getPubdataPublishedFromMeta(uint256 meta) internal pure returns (uint32 pubdataPublished) {
        pubdataPublished = uint32(extractNumberFromMeta(meta, META_PUBDATA_PUBLISHED_OFFSET, 32));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size
    /// of the heap in bytes.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return heapSize The size of the memory in bytes byte.
    /// @dev The following expression: getHeapSizeFromMeta(getZkSyncMetaBytes()) is
    /// equivalent to the MSIZE in Solidity.
    function getHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 heapSize) {
        heapSize = uint32(extractNumberFromMeta(meta, META_HEAP_SIZE_OFFSET, 32));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the number of the current size
    /// of the auxiliary heap in bytes.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return auxHeapSize The size of the auxiliary memory in bytes byte.
    /// @dev You can read more on auxiliary memory in the VM1.2 documentation.
    function getAuxHeapSizeFromMeta(uint256 meta) internal pure returns (uint32 auxHeapSize) {
        auxHeapSize = uint32(extractNumberFromMeta(meta, META_AUX_HEAP_SIZE_OFFSET, 32));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of `this`.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return shardId The shardId of `this`.
    /// @dev Currently only shard 0 (zkRollup) is supported.
    function getShardIdFromMeta(uint256 meta) internal pure returns (uint8 shardId) {
        shardId = uint8(extractNumberFromMeta(meta, META_SHARD_ID_OFFSET, 8));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of
    /// the msg.sender.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return callerShardId The shardId of the msg.sender.
    /// @dev Currently only shard 0 (zkRollup) is supported.
    function getCallerShardIdFromMeta(uint256 meta) internal pure returns (uint8 callerShardId) {
        callerShardId = uint8(extractNumberFromMeta(meta, META_CALLER_SHARD_ID_OFFSET, 8));
    }

    /// @notice Given the packed representation of `ZkSyncMeta`, retrieves the shardId of
    /// the currently executed code.
    /// @param meta Packed representation of the ZkSyncMeta.
    /// @return codeShardId The shardId of the currently executed code.
    /// @dev Currently only shard 0 (zkRollup) is supported.
    function getCodeShardIdFromMeta(uint256 meta) internal pure returns (uint8 codeShardId) {
        codeShardId = uint8(extractNumberFromMeta(meta, META_CODE_SHARD_ID_OFFSET, 8));
    }

    /// @notice Retrieves the ZkSyncMeta structure.
    /// @notice NOTE: The behavior of this function will experience a breaking change in 2024.
    /// @return meta The ZkSyncMeta execution context parameters.
    function getZkSyncMeta() internal view returns (ZkSyncMeta memory meta) {
        uint256 metaPacked = getZkSyncMetaBytes();
        meta.pubdataPublished = getPubdataPublishedFromMeta(metaPacked);
        meta.heapSize = getHeapSizeFromMeta(metaPacked);
        meta.auxHeapSize = getAuxHeapSizeFromMeta(metaPacked);
        meta.shardId = getShardIdFromMeta(metaPacked);
        meta.callerShardId = getCallerShardIdFromMeta(metaPacked);
        meta.codeShardId = getCodeShardIdFromMeta(metaPacked);
    }

    /// @notice Returns the call flags for the current call.
    /// @return callFlags The bitmask of the callflags.
    /// @dev Call flags is the value of the first register
    /// at the start of the call.
    /// @dev The zero bit of the callFlags indicates whether the call is
    /// a constructor call. The first bit of the callFlags indicates whether
    /// the call is a system one.
    function getCallFlags() internal view returns (uint256 callFlags) {
        address callAddr = CALLFLAGS_CALL_ADDRESS;
        assembly {
            callFlags := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Returns the current calldata pointer.
    /// @return ptr The current calldata pointer.
    /// @dev NOTE: This file is just an integer and it cannot be used
    /// to forward the calldata to the next calls in any way.
    function getCalldataPtr() internal view returns (uint256 ptr) {
        address callAddr = PTR_CALLDATA_CALL_ADDRESS;
        assembly {
            ptr := staticcall(0, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Returns the N-th extraAbiParam for the current call.
    /// @return extraAbiData The value of the N-th extraAbiParam for this call.
    /// @dev It is equal to the value of the (N+2)-th register
    /// at the start of the call.
    function getExtraAbiData(uint256 index) internal view returns (uint256 extraAbiData) {
        require(index < 10, "There are only 10 accessible registers");

        address callAddr = GET_EXTRA_ABI_DATA_ADDRESS;
        assembly {
            extraAbiData := staticcall(index, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Returns whether the current call is a system call.
    /// @return `true` or `false` based on whether the current call is a system call.
    function isSystemCall() internal view returns (bool) {
        uint256 callFlags = getCallFlags();
        // When the system call is passed, the 2-bit is set to 1
        return (callFlags & 2) != 0;
    }

    /// @notice Returns whether the address is a system contract.
    /// @param _address The address to test
    /// @return `true` or `false` based on whether the `_address` is a system contract.
    function isSystemContract(address _address) internal pure returns (bool) {
        return uint160(_address) <= uint160(MAX_SYSTEM_CONTRACT_ADDRESS);
    }

    /// @notice Method used for burning a certain amount of gas.
    /// @param _gasToPay The number of gas to burn.
    /// @param _pubdataToSpend The number of pubdata bytes to burn during the call.
    function burnGas(uint32 _gasToPay, uint32 _pubdataToSpend) internal view {
        bool precompileCallSuccess = unsafePrecompileCall(
            0, // The precompile parameters are formal ones. We only need the precompile call to burn gas.
            _gasToPay,
            _pubdataToSpend
        );
        require(precompileCallSuccess, "Failed to charge gas");
    }
}

File 7 of 27 : IAccountCodeStorage.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

interface IAccountCodeStorage {
    function storeAccountConstructingCodeHash(address _address, bytes32 _hash) external;

    function storeAccountConstructedCodeHash(address _address, bytes32 _hash) external;

    function markAccountCodeHashAsConstructed(address _address) external;

    function getRawCodeHash(address _address) external view returns (bytes32 codeHash);

    function getCodeHash(uint256 _input) external view returns (bytes32 codeHash);

    function getCodeSize(uint256 _input) external view returns (uint256 codeSize);
}

File 8 of 27 : INonceHolder.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

/**
 * @author Matter Labs
 * @dev Interface of the nonce holder contract -- a contract used by the system to ensure
 * that there is always a unique identifier for a transaction with a particular account (we call it nonce).
 * In other words, the pair of (address, nonce) should always be unique.
 * @dev Custom accounts should use methods of this contract to store nonces or other possible unique identifiers
 * for the transaction.
 */
interface INonceHolder {
    event ValueSetUnderNonce(address indexed accountAddress, uint256 indexed key, uint256 value);

    /// @dev Returns the current minimal nonce for account.
    function getMinNonce(address _address) external view returns (uint256);

    /// @dev Returns the raw version of the current minimal nonce
    /// (equal to minNonce + 2^128 * deployment nonce).
    function getRawNonce(address _address) external view returns (uint256);

    /// @dev Increases the minimal nonce for the msg.sender.
    function increaseMinNonce(uint256 _value) external returns (uint256);

    /// @dev Sets the nonce value `key` as used.
    function setValueUnderNonce(uint256 _key, uint256 _value) external;

    /// @dev Gets the value stored inside a custom nonce.
    function getValueUnderNonce(uint256 _key) external view returns (uint256);

    /// @dev A convenience method to increment the minimal nonce if it is equal
    /// to the `_expectedNonce`.
    function incrementMinNonceIfEquals(uint256 _expectedNonce) external;

    /// @dev Returns the deployment nonce for the accounts used for CREATE opcode.
    function getDeploymentNonce(address _address) external view returns (uint256);

    /// @dev Increments the deployment nonce for the account and returns the previous one.
    function incrementDeploymentNonce(address _address) external returns (uint256);

    /// @dev Determines whether a certain nonce has been already used for an account.
    function validateNonceUsage(address _address, uint256 _key, bool _shouldBeUsed) external view;

    /// @dev Returns whether a nonce has been used for an account.
    function isNonceUsed(address _address, uint256 _nonce) external view returns (bool);
}

File 9 of 27 : IContractDeployer.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

interface IContractDeployer {
    /// @notice Defines the version of the account abstraction protocol
    /// that a contract claims to follow.
    /// - `None` means that the account is just a contract and it should never be interacted
    /// with as a custom account
    /// - `Version1` means that the account follows the first version of the account abstraction protocol
    enum AccountAbstractionVersion {
        None,
        Version1
    }

    /// @notice Defines the nonce ordering used by the account
    /// - `Sequential` means that it is expected that the nonces are monotonic and increment by 1
    /// at a time (the same as EOAs).
    /// - `Arbitrary` means that the nonces for the accounts can be arbitrary. The operator
    /// should serve the transactions from such an account on a first-come-first-serve basis.
    /// @dev This ordering is more of a suggestion to the operator on how the AA expects its transactions
    /// to be processed and is not considered as a system invariant.
    enum AccountNonceOrdering {
        Sequential,
        Arbitrary
    }

    struct AccountInfo {
        AccountAbstractionVersion supportedAAVersion;
        AccountNonceOrdering nonceOrdering;
    }

    event ContractDeployed(
        address indexed deployerAddress,
        bytes32 indexed bytecodeHash,
        address indexed contractAddress
    );

    event AccountNonceOrderingUpdated(address indexed accountAddress, AccountNonceOrdering nonceOrdering);

    event AccountVersionUpdated(address indexed accountAddress, AccountAbstractionVersion aaVersion);

    function getNewAddressCreate2(
        address _sender,
        bytes32 _bytecodeHash,
        bytes32 _salt,
        bytes calldata _input
    ) external view returns (address newAddress);

    function getNewAddressCreate(address _sender, uint256 _senderNonce) external pure returns (address newAddress);

    function create2(
        bytes32 _salt,
        bytes32 _bytecodeHash,
        bytes calldata _input
    ) external payable returns (address newAddress);

    function create2Account(
        bytes32 _salt,
        bytes32 _bytecodeHash,
        bytes calldata _input,
        AccountAbstractionVersion _aaVersion
    ) external payable returns (address newAddress);

    /// @dev While the `_salt` parameter is not used anywhere here,
    /// it is still needed for consistency between `create` and
    /// `create2` functions (required by the compiler).
    function create(
        bytes32 _salt,
        bytes32 _bytecodeHash,
        bytes calldata _input
    ) external payable returns (address newAddress);

    /// @dev While `_salt` is never used here, we leave it here as a parameter
    /// for the consistency with the `create` function.
    function createAccount(
        bytes32 _salt,
        bytes32 _bytecodeHash,
        bytes calldata _input,
        AccountAbstractionVersion _aaVersion
    ) external payable returns (address newAddress);

    /// @notice Returns the information about a certain AA.
    function getAccountInfo(address _address) external view returns (AccountInfo memory info);

    /// @notice Can be called by an account to update its account version
    function updateAccountVersion(AccountAbstractionVersion _version) external;

    /// @notice Can be called by an account to update its nonce ordering
    function updateNonceOrdering(AccountNonceOrdering _nonceOrdering) external;
}

File 10 of 27 : IKnownCodesStorage.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice The interface for the KnownCodesStorage contract, which is responsible
 * for storing the hashes of the bytecodes that have been published to the network.
 */
interface IKnownCodesStorage {
    event MarkedAsKnown(bytes32 indexed bytecodeHash, bool indexed sendBytecodeToL1);

    function markFactoryDeps(bool _shouldSendToL1, bytes32[] calldata _hashes) external;

    function markBytecodeAsPublished(bytes32 _bytecodeHash) external;

    function getMarker(bytes32 _hash) external view returns (uint256);
}

File 11 of 27 : IImmutableSimulator.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

struct ImmutableData {
    uint256 index;
    bytes32 value;
}

interface IImmutableSimulator {
    function getImmutable(address _dest, uint256 _index) external view returns (bytes32);

    function setImmutables(address _dest, ImmutableData[] calldata _immutables) external;
}

File 12 of 27 : IL1Messenger.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

/// @dev The log passed from L2
/// @param l2ShardId The shard identifier, 0 - rollup, 1 - porter. All other values are not used but are reserved for the future
/// @param isService A boolean flag that is part of the log along with `key`, `value`, and `sender` address.
/// This field is required formally but does not have any special meaning.
/// @param txNumberInBlock The L2 transaction number in a block, in which the log was sent
/// @param sender The L2 address which sent the log
/// @param key The 32 bytes of information that was sent in the log
/// @param value The 32 bytes of information that was sent in the log
// Both `key` and `value` are arbitrary 32-bytes selected by the log sender
struct L2ToL1Log {
    uint8 l2ShardId;
    bool isService;
    uint16 txNumberInBlock;
    address sender;
    bytes32 key;
    bytes32 value;
}

/// @dev Bytes in raw L2 to L1 log
/// @dev Equal to the bytes size of the tuple - (uint8 ShardId, bool isService, uint16 txNumberInBlock, address sender, bytes32 key, bytes32 value)
uint256 constant L2_TO_L1_LOG_SERIALIZE_SIZE = 88;

/// @dev The value of default leaf hash for L2 to L1 logs Merkle tree
/// @dev An incomplete fixed-size tree is filled with this value to be a full binary tree
/// @dev Actually equal to the `keccak256(new bytes(L2_TO_L1_LOG_SERIALIZE_SIZE))`
bytes32 constant L2_L1_LOGS_TREE_DEFAULT_LEAF_HASH = 0x72abee45b59e344af8a6e520241c4744aff26ed411f4c4b00f8af09adada43ba;

/// @dev The current version of state diff compression being used.
uint256 constant STATE_DIFF_COMPRESSION_VERSION_NUMBER = 1;

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice The interface of the L1 Messenger contract, responsible for sending messages to L1.
 */
interface IL1Messenger {
    // Possibly in the future we will be able to track the messages sent to L1 with
    // some hooks in the VM. For now, it is much easier to track them with L2 events.
    event L1MessageSent(address indexed _sender, bytes32 indexed _hash, bytes _message);

    event L2ToL1LogSent(L2ToL1Log _l2log);

    event BytecodeL1PublicationRequested(bytes32 _bytecodeHash);

    function sendToL1(bytes memory _message) external returns (bytes32);

    function sendL2ToL1Log(bool _isService, bytes32 _key, bytes32 _value) external returns (uint256 logIdInMerkleTree);

    // This function is expected to be called only by the KnownCodesStorage system contract
    function requestBytecodeL1Publication(bytes32 _bytecodeHash) external;
}

File 13 of 27 : ISystemContext.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice Contract that stores some of the context variables, that may be either
 * block-scoped, tx-scoped or system-wide.
 */
interface ISystemContext {
    struct BlockInfo {
        uint128 timestamp;
        uint128 number;
    }

    /// @notice A structure representing the timeline for the upgrade from the batch numbers to the L2 block numbers.
    /// @dev It will be used for the L1 batch -> L2 block migration in Q3 2023 only.
    struct VirtualBlockUpgradeInfo {
        /// @notice In order to maintain consistent results for `blockhash` requests, we'll
        /// have to remember the number of the batch when the upgrade to the virtual blocks has been done.
        /// The hashes for virtual blocks before the upgrade are identical to the hashes of the corresponding batches.
        uint128 virtualBlockStartBatch;
        /// @notice L2 block when the virtual blocks have caught up with the L2 blocks. Starting from this block,
        /// all the information returned to users for block.timestamp/number, etc should be the information about the L2 blocks and
        /// not virtual blocks.
        uint128 virtualBlockFinishL2Block;
    }

    function chainId() external view returns (uint256);

    function origin() external view returns (address);

    function gasPrice() external view returns (uint256);

    function blockGasLimit() external view returns (uint256);

    function coinbase() external view returns (address);

    function difficulty() external view returns (uint256);

    function baseFee() external view returns (uint256);

    function txNumberInBlock() external view returns (uint16);

    function getBlockHashEVM(uint256 _block) external view returns (bytes32);

    function getBatchHash(uint256 _batchNumber) external view returns (bytes32 hash);

    function getBlockNumber() external view returns (uint128);

    function getBlockTimestamp() external view returns (uint128);

    function getBatchNumberAndTimestamp() external view returns (uint128 blockNumber, uint128 blockTimestamp);

    function getL2BlockNumberAndTimestamp() external view returns (uint128 blockNumber, uint128 blockTimestamp);

    function gasPerPubdataByte() external view returns (uint256 gasPerPubdataByte);

    function getCurrentPubdataSpent() external view returns (uint256 currentPubdataSpent);
}

File 14 of 27 : ICompressor.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

// The bitmask by applying which to the compressed state diff metadata we retrieve its operation.
uint8 constant OPERATION_BITMASK = 7;
// The number of bits shifting the compressed state diff metadata by which we retrieve its length.
uint8 constant LENGTH_BITS_OFFSET = 3;
// The maximal length in bytes that an enumeration index can have.
uint8 constant MAX_ENUMERATION_INDEX_SIZE = 8;

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice The interface for the Compressor contract, responsible for verifying the correctness of
 * the compression of the state diffs and bytecodes.
 */
interface ICompressor {
    function publishCompressedBytecode(
        bytes calldata _bytecode,
        bytes calldata _rawCompressedData
    ) external returns (bytes32 bytecodeHash);

    function verifyCompressedStateDiffs(
        uint256 _numberOfStateDiffs,
        uint256 _enumerationIndexSize,
        bytes calldata _stateDiffs,
        bytes calldata _compressedStateDiffs
    ) external returns (bytes32 stateDiffHash);
}

File 15 of 27 : IComplexUpgrader.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice The interface for the ComplexUpgrader contract.
 */
interface IComplexUpgrader {
    function upgrade(address _delegateTo, bytes calldata _calldata) external payable;
}

File 16 of 27 : IBootloaderUtilities.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

import {Transaction} from "../libraries/TransactionHelper.sol";

interface IBootloaderUtilities {
    function getTransactionHashes(
        Transaction calldata _transaction
    ) external view returns (bytes32 txHash, bytes32 signedTxHash);
}

File 17 of 27 : IPubdataChunkPublisher.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice Interface for contract responsible chunking pubdata into the appropriate size for EIP-4844 blobs.
 */
interface IPubdataChunkPublisher {
    /// @notice Chunks pubdata into pieces that can fit into blobs.
    /// @param _pubdata The total l2 to l1 pubdata that will be sent via L1 blobs.
    function chunkAndPublishPubdata(bytes calldata _pubdata) external;
}

File 18 of 27 : SystemContractsCaller.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

import {MSG_VALUE_SYSTEM_CONTRACT, MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT} from "../Constants.sol";
import {Utils} from "./Utils.sol";

// Addresses used for the compiler to be replaced with the
// zkSync-specific opcodes during the compilation.
// IMPORTANT: these are just compile-time constants and are used
// only if used in-place by Yul optimizer.
address constant TO_L1_CALL_ADDRESS = address((1 << 16) - 1);
address constant CODE_ADDRESS_CALL_ADDRESS = address((1 << 16) - 2);
address constant PRECOMPILE_CALL_ADDRESS = address((1 << 16) - 3);
address constant META_CALL_ADDRESS = address((1 << 16) - 4);
address constant MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 5);
address constant SYSTEM_MIMIC_CALL_CALL_ADDRESS = address((1 << 16) - 6);
address constant MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 7);
address constant SYSTEM_MIMIC_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 8);
address constant RAW_FAR_CALL_CALL_ADDRESS = address((1 << 16) - 9);
address constant RAW_FAR_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 10);
address constant SYSTEM_CALL_CALL_ADDRESS = address((1 << 16) - 11);
address constant SYSTEM_CALL_BY_REF_CALL_ADDRESS = address((1 << 16) - 12);
address constant SET_CONTEXT_VALUE_CALL_ADDRESS = address((1 << 16) - 13);
address constant SET_PUBDATA_PRICE_CALL_ADDRESS = address((1 << 16) - 14);
address constant INCREMENT_TX_COUNTER_CALL_ADDRESS = address((1 << 16) - 15);
address constant PTR_CALLDATA_CALL_ADDRESS = address((1 << 16) - 16);
address constant CALLFLAGS_CALL_ADDRESS = address((1 << 16) - 17);
address constant PTR_RETURNDATA_CALL_ADDRESS = address((1 << 16) - 18);
address constant EVENT_INITIALIZE_ADDRESS = address((1 << 16) - 19);
address constant EVENT_WRITE_ADDRESS = address((1 << 16) - 20);
address constant LOAD_CALLDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 21);
address constant LOAD_LATEST_RETURNDATA_INTO_ACTIVE_PTR_CALL_ADDRESS = address((1 << 16) - 22);
address constant PTR_ADD_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 23);
address constant PTR_SHRINK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 24);
address constant PTR_PACK_INTO_ACTIVE_CALL_ADDRESS = address((1 << 16) - 25);
address constant MULTIPLICATION_HIGH_ADDRESS = address((1 << 16) - 26);
address constant GET_EXTRA_ABI_DATA_ADDRESS = address((1 << 16) - 27);

// All the offsets are in bits
uint256 constant META_PUBDATA_PUBLISHED_OFFSET = 0 * 8;
uint256 constant META_HEAP_SIZE_OFFSET = 8 * 8;
uint256 constant META_AUX_HEAP_SIZE_OFFSET = 12 * 8;
uint256 constant META_SHARD_ID_OFFSET = 28 * 8;
uint256 constant META_CALLER_SHARD_ID_OFFSET = 29 * 8;
uint256 constant META_CODE_SHARD_ID_OFFSET = 30 * 8;

/// @notice The way to forward the calldata:
/// - Use the current heap (i.e. the same as on EVM).
/// - Use the auxiliary heap.
/// - Forward via a pointer
/// @dev Note, that currently, users do not have access to the auxiliary
/// heap and so the only type of forwarding that will be used by the users
/// are UseHeap and ForwardFatPointer for forwarding a slice of the current calldata
/// to the next call.
enum CalldataForwardingMode {
    UseHeap,
    ForwardFatPointer,
    UseAuxHeap
}

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice A library that allows calling contracts with the `isSystem` flag.
 * @dev It is needed to call ContractDeployer and NonceHolder.
 */
library SystemContractsCaller {
    /// @notice Makes a call with the `isSystem` flag.
    /// @param gasLimit The gas limit for the call.
    /// @param to The address to call.
    /// @param value The value to pass with the transaction.
    /// @param data The calldata.
    /// @return success Whether the transaction has been successful.
    /// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
    function systemCall(uint32 gasLimit, address to, uint256 value, bytes memory data) internal returns (bool success) {
        address callAddr = SYSTEM_CALL_CALL_ADDRESS;

        uint32 dataStart;
        assembly {
            dataStart := add(data, 0x20)
        }
        uint32 dataLength = uint32(Utils.safeCastToU32(data.length));

        uint256 farCallAbi = SystemContractsCaller.getFarCallABI({
            dataOffset: 0,
            memoryPage: 0,
            dataStart: dataStart,
            dataLength: dataLength,
            gasPassed: gasLimit,
            // Only rollup is supported for now
            shardId: 0,
            forwardingMode: CalldataForwardingMode.UseHeap,
            isConstructorCall: false,
            isSystemCall: true
        });

        if (value == 0) {
            // Doing the system call directly
            assembly {
                success := call(to, callAddr, 0, 0, farCallAbi, 0, 0)
            }
        } else {
            address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT;
            // We need to supply the mask to the MsgValueSimulator to denote
            // that the call should be a system one.
            uint256 forwardMask = MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT;

            assembly {
                success := call(msgValueSimulator, callAddr, value, to, farCallAbi, forwardMask, 0)
            }
        }
    }

    /// @notice Makes a call with the `isSystem` flag.
    /// @param gasLimit The gas limit for the call.
    /// @param to The address to call.
    /// @param value The value to pass with the transaction.
    /// @param data The calldata.
    /// @return success Whether the transaction has been successful.
    /// @return returnData The returndata of the transaction (revert reason in case the transaction has failed).
    /// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
    function systemCallWithReturndata(
        uint32 gasLimit,
        address to,
        uint128 value,
        bytes memory data
    ) internal returns (bool success, bytes memory returnData) {
        success = systemCall(gasLimit, to, value, data);

        uint256 size;
        assembly {
            size := returndatasize()
        }

        returnData = new bytes(size);
        assembly {
            returndatacopy(add(returnData, 0x20), 0, size)
        }
    }

    /// @notice Makes a call with the `isSystem` flag.
    /// @param gasLimit The gas limit for the call.
    /// @param to The address to call.
    /// @param value The value to pass with the transaction.
    /// @param data The calldata.
    /// @return returnData The returndata of the transaction. In case the transaction reverts, the error
    /// bubbles up to the parent frame.
    /// @dev Note, that the `isSystem` flag can only be set when calling system contracts.
    function systemCallWithPropagatedRevert(
        uint32 gasLimit,
        address to,
        uint128 value,
        bytes memory data
    ) internal returns (bytes memory returnData) {
        bool success;
        (success, returnData) = systemCallWithReturndata(gasLimit, to, value, data);

        if (!success) {
            assembly {
                let size := mload(returnData)
                revert(add(returnData, 0x20), size)
            }
        }
    }

    /// @notice Calculates the packed representation of the FarCallABI.
    /// @param dataOffset Calldata offset in memory. Provide 0 unless using custom pointer.
    /// @param memoryPage Memory page to use. Provide 0 unless using custom pointer.
    /// @param dataStart The start of the calldata slice. Provide the offset in memory
    /// if not using custom pointer.
    /// @param dataLength The calldata length. Provide the length of the calldata in bytes
    /// unless using custom pointer.
    /// @param gasPassed The gas to pass with the call.
    /// @param shardId Of the account to call. Currently only 0 is supported.
    /// @param forwardingMode The forwarding mode to use:
    /// - provide CalldataForwardingMode.UseHeap when using your current memory
    /// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer.
    /// @param isConstructorCall Whether the call will be a call to the constructor
    /// (ignored when the caller is not a system contract).
    /// @param isSystemCall Whether the call will have the `isSystem` flag.
    /// @return farCallAbi The far call ABI.
    /// @dev The `FarCallABI` has the following structure:
    /// pub struct FarCallABI {
    ///     pub memory_quasi_fat_pointer: FatPointer,
    ///     pub gas_passed: u32,
    ///     pub shard_id: u8,
    ///     pub forwarding_mode: FarCallForwardPageType,
    ///     pub constructor_call: bool,
    ///     pub to_system: bool,
    /// }
    ///
    /// The FatPointer struct:
    ///
    /// pub struct FatPointer {
    ///     pub offset: u32, // offset relative to `start`
    ///     pub memory_page: u32, // memory page where slice is located
    ///     pub start: u32, // absolute start of the slice
    ///     pub length: u32, // length of the slice
    /// }
    ///
    /// @dev Note, that the actual layout is the following:
    ///
    /// [0..32) bits -- the calldata offset
    /// [32..64) bits -- the memory page to use. Can be left blank in most of the cases.
    /// [64..96) bits -- the absolute start of the slice
    /// [96..128) bits -- the length of the slice.
    /// [128..192) bits -- empty bits.
    /// [192..224) bits -- gasPassed.
    /// [224..232) bits -- forwarding_mode
    /// [232..240) bits -- shard id.
    /// [240..248) bits -- constructor call flag
    /// [248..256] bits -- system call flag
    function getFarCallABI(
        uint32 dataOffset,
        uint32 memoryPage,
        uint32 dataStart,
        uint32 dataLength,
        uint32 gasPassed,
        uint8 shardId,
        CalldataForwardingMode forwardingMode,
        bool isConstructorCall,
        bool isSystemCall
    ) internal pure returns (uint256 farCallAbi) {
        // Fill in the call parameter fields
        farCallAbi = getFarCallABIWithEmptyFatPointer({
            gasPassed: gasPassed,
            shardId: shardId,
            forwardingMode: forwardingMode,
            isConstructorCall: isConstructorCall,
            isSystemCall: isSystemCall
        });

        // Fill in the fat pointer fields
        farCallAbi |= dataOffset;
        farCallAbi |= (uint256(memoryPage) << 32);
        farCallAbi |= (uint256(dataStart) << 64);
        farCallAbi |= (uint256(dataLength) << 96);
    }

    /// @notice Calculates the packed representation of the FarCallABI with zero fat pointer fields.
    /// @param gasPassed The gas to pass with the call.
    /// @param shardId Of the account to call. Currently only 0 is supported.
    /// @param forwardingMode The forwarding mode to use:
    /// - provide CalldataForwardingMode.UseHeap when using your current memory
    /// - provide CalldataForwardingMode.ForwardFatPointer when using custom pointer.
    /// @param isConstructorCall Whether the call will be a call to the constructor
    /// (ignored when the caller is not a system contract).
    /// @param isSystemCall Whether the call will have the `isSystem` flag.
    /// @return farCallAbiWithEmptyFatPtr The far call ABI with zero fat pointer fields.
    function getFarCallABIWithEmptyFatPointer(
        uint32 gasPassed,
        uint8 shardId,
        CalldataForwardingMode forwardingMode,
        bool isConstructorCall,
        bool isSystemCall
    ) internal pure returns (uint256 farCallAbiWithEmptyFatPtr) {
        farCallAbiWithEmptyFatPtr |= (uint256(gasPassed) << 192);
        farCallAbiWithEmptyFatPtr |= (uint256(forwardingMode) << 224);
        farCallAbiWithEmptyFatPtr |= (uint256(shardId) << 232);
        if (isConstructorCall) {
            farCallAbiWithEmptyFatPtr |= (1 << 240);
        }
        if (isSystemCall) {
            farCallAbiWithEmptyFatPtr |= (1 << 248);
        }
    }
}

File 19 of 27 : TransactionHelper.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

import {IERC20} from "../openzeppelin/token/ERC20/IERC20.sol";
import {SafeERC20} from "../openzeppelin/token/ERC20/utils/SafeERC20.sol";

import {IPaymasterFlow} from "../interfaces/IPaymasterFlow.sol";
import {BASE_TOKEN_SYSTEM_CONTRACT, BOOTLOADER_FORMAL_ADDRESS} from "../Constants.sol";
import {RLPEncoder} from "./RLPEncoder.sol";
import {EfficientCall} from "./EfficientCall.sol";

/// @dev The type id of zkSync's EIP-712-signed transaction.
uint8 constant EIP_712_TX_TYPE = 0x71;

/// @dev The type id of legacy transactions.
uint8 constant LEGACY_TX_TYPE = 0x0;
/// @dev The type id of legacy transactions.
uint8 constant EIP_2930_TX_TYPE = 0x01;
/// @dev The type id of EIP1559 transactions.
uint8 constant EIP_1559_TX_TYPE = 0x02;

/// @notice Structure used to represent a zkSync transaction.
struct Transaction {
    // The type of the transaction.
    uint256 txType;
    // The caller.
    uint256 from;
    // The callee.
    uint256 to;
    // The gasLimit to pass with the transaction.
    // It has the same meaning as Ethereum's gasLimit.
    uint256 gasLimit;
    // The maximum amount of gas the user is willing to pay for a byte of pubdata.
    uint256 gasPerPubdataByteLimit;
    // The maximum fee per gas that the user is willing to pay.
    // It is akin to EIP1559's maxFeePerGas.
    uint256 maxFeePerGas;
    // The maximum priority fee per gas that the user is willing to pay.
    // It is akin to EIP1559's maxPriorityFeePerGas.
    uint256 maxPriorityFeePerGas;
    // The transaction's paymaster. If there is no paymaster, it is equal to 0.
    uint256 paymaster;
    // The nonce of the transaction.
    uint256 nonce;
    // The value to pass with the transaction.
    uint256 value;
    // In the future, we might want to add some
    // new fields to the struct. The `txData` struct
    // is to be passed to account and any changes to its structure
    // would mean a breaking change to these accounts. In order to prevent this,
    // we should keep some fields as "reserved".
    // It is also recommended that their length is fixed, since
    // it would allow easier proof integration (in case we will need
    // some special circuit for preprocessing transactions).
    uint256[4] reserved;
    // The transaction's calldata.
    bytes data;
    // The signature of the transaction.
    bytes signature;
    // The properly formatted hashes of bytecodes that must be published on L1
    // with the inclusion of this transaction. Note, that a bytecode has been published
    // before, the user won't pay fees for its republishing.
    bytes32[] factoryDeps;
    // The input to the paymaster.
    bytes paymasterInput;
    // Reserved dynamic type for the future use-case. Using it should be avoided,
    // But it is still here, just in case we want to enable some additional functionality.
    bytes reservedDynamic;
}

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice Library is used to help custom accounts to work with common methods for the Transaction type.
 */
library TransactionHelper {
    using SafeERC20 for IERC20;

    /// @notice The EIP-712 typehash for the contract's domain
    bytes32 constant EIP712_DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,string version,uint256 chainId)");

    bytes32 constant EIP712_TRANSACTION_TYPE_HASH =
        keccak256(
            "Transaction(uint256 txType,uint256 from,uint256 to,uint256 gasLimit,uint256 gasPerPubdataByteLimit,uint256 maxFeePerGas,uint256 maxPriorityFeePerGas,uint256 paymaster,uint256 nonce,uint256 value,bytes data,bytes32[] factoryDeps,bytes paymasterInput)"
        );

    /// @notice Whether the token is Ethereum.
    /// @param _addr The address of the token
    /// @return `true` or `false` based on whether the token is Ether.
    /// @dev This method assumes that address is Ether either if the address is 0 (for convenience)
    /// or if the address is the address of the L2BaseToken system contract.
    function isEthToken(uint256 _addr) internal pure returns (bool) {
        return _addr == uint256(uint160(address(BASE_TOKEN_SYSTEM_CONTRACT))) || _addr == 0;
    }

    /// @notice Calculate the suggested signed hash of the transaction,
    /// i.e. the hash that is signed by EOAs and is recommended to be signed by other accounts.
    function encodeHash(Transaction calldata _transaction) internal view returns (bytes32 resultHash) {
        if (_transaction.txType == LEGACY_TX_TYPE) {
            resultHash = _encodeHashLegacyTransaction(_transaction);
        } else if (_transaction.txType == EIP_712_TX_TYPE) {
            resultHash = _encodeHashEIP712Transaction(_transaction);
        } else if (_transaction.txType == EIP_1559_TX_TYPE) {
            resultHash = _encodeHashEIP1559Transaction(_transaction);
        } else if (_transaction.txType == EIP_2930_TX_TYPE) {
            resultHash = _encodeHashEIP2930Transaction(_transaction);
        } else {
            // Currently no other transaction types are supported.
            // Any new transaction types will be processed in a similar manner.
            revert("Encoding unsupported tx");
        }
    }

    /// @notice Encode hash of the zkSync native transaction type.
    /// @return keccak256 hash of the EIP-712 encoded representation of transaction
    function _encodeHashEIP712Transaction(Transaction calldata _transaction) private view returns (bytes32) {
        bytes32 structHash = keccak256(
            // solhint-disable-next-line func-named-parameters
            abi.encode(
                EIP712_TRANSACTION_TYPE_HASH,
                _transaction.txType,
                _transaction.from,
                _transaction.to,
                _transaction.gasLimit,
                _transaction.gasPerPubdataByteLimit,
                _transaction.maxFeePerGas,
                _transaction.maxPriorityFeePerGas,
                _transaction.paymaster,
                _transaction.nonce,
                _transaction.value,
                EfficientCall.keccak(_transaction.data),
                keccak256(abi.encodePacked(_transaction.factoryDeps)),
                EfficientCall.keccak(_transaction.paymasterInput)
            )
        );

        bytes32 domainSeparator = keccak256(
            abi.encode(EIP712_DOMAIN_TYPEHASH, keccak256("zkSync"), keccak256("2"), block.chainid)
        );

        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }

    /// @notice Encode hash of the legacy transaction type.
    /// @return keccak256 of the serialized RLP encoded representation of transaction
    function _encodeHashLegacyTransaction(Transaction calldata _transaction) private view returns (bytes32) {
        // Hash of legacy transactions are encoded as one of the:
        // - RLP(nonce, gasPrice, gasLimit, to, value, data, chainId, 0, 0)
        // - RLP(nonce, gasPrice, gasLimit, to, value, data)
        //
        // In this RLP encoding, only the first one above list appears, so we encode each element
        // inside list and then concatenate the length of all elements with them.

        bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
        // Encode `gasPrice` and `gasLimit` together to prevent "stack too deep error".
        bytes memory encodedGasParam;
        {
            bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
            bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
            encodedGasParam = bytes.concat(encodedGasPrice, encodedGasLimit);
        }

        bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
        bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
        // Encode only the length of the transaction data, and not the data itself,
        // so as not to copy to memory a potentially huge transaction data twice.
        bytes memory encodedDataLength;
        {
            // Safe cast, because the length of the transaction data can't be so large.
            uint64 txDataLen = uint64(_transaction.data.length);
            if (txDataLen != 1) {
                // If the length is not equal to one, then only using the length can it be encoded definitely.
                encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
            } else if (_transaction.data[0] >= 0x80) {
                // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
                encodedDataLength = hex"81";
            }
            // Otherwise the length is not encoded at all.
        }

        // Encode `chainId` according to EIP-155, but only if the `chainId` is specified in the transaction.
        bytes memory encodedChainId;
        if (_transaction.reserved[0] != 0) {
            encodedChainId = bytes.concat(RLPEncoder.encodeUint256(block.chainid), hex"80_80");
        }

        bytes memory encodedListLength;
        unchecked {
            uint256 listLength = encodedNonce.length +
                encodedGasParam.length +
                encodedTo.length +
                encodedValue.length +
                encodedDataLength.length +
                _transaction.data.length +
                encodedChainId.length;

            // Safe cast, because the length of the list can't be so large.
            encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
        }

        return
            keccak256(
                // solhint-disable-next-line func-named-parameters
                bytes.concat(
                    encodedListLength,
                    encodedNonce,
                    encodedGasParam,
                    encodedTo,
                    encodedValue,
                    encodedDataLength,
                    _transaction.data,
                    encodedChainId
                )
            );
    }

    /// @notice Encode hash of the EIP2930 transaction type.
    /// @return keccak256 of the serialized RLP encoded representation of transaction
    function _encodeHashEIP2930Transaction(Transaction calldata _transaction) private view returns (bytes32) {
        // Hash of EIP2930 transactions is encoded the following way:
        // H(0x01 || RLP(chain_id, nonce, gas_price, gas_limit, destination, amount, data, access_list))
        //
        // Note, that on zkSync access lists are not supported and should always be empty.

        // Encode all fixed-length params to avoid "stack too deep error"
        bytes memory encodedFixedLengthParams;
        {
            bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
            bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
            bytes memory encodedGasPrice = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
            bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
            bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
            bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
            // solhint-disable-next-line func-named-parameters
            encodedFixedLengthParams = bytes.concat(
                encodedChainId,
                encodedNonce,
                encodedGasPrice,
                encodedGasLimit,
                encodedTo,
                encodedValue
            );
        }

        // Encode only the length of the transaction data, and not the data itself,
        // so as not to copy to memory a potentially huge transaction data twice.
        bytes memory encodedDataLength;
        {
            // Safe cast, because the length of the transaction data can't be so large.
            uint64 txDataLen = uint64(_transaction.data.length);
            if (txDataLen != 1) {
                // If the length is not equal to one, then only using the length can it be encoded definitely.
                encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
            } else if (_transaction.data[0] >= 0x80) {
                // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
                encodedDataLength = hex"81";
            }
            // Otherwise the length is not encoded at all.
        }

        // On zkSync, access lists are always zero length (at least for now).
        bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);

        bytes memory encodedListLength;
        unchecked {
            uint256 listLength = encodedFixedLengthParams.length +
                encodedDataLength.length +
                _transaction.data.length +
                encodedAccessListLength.length;

            // Safe cast, because the length of the list can't be so large.
            encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
        }

        return
            keccak256(
                // solhint-disable-next-line func-named-parameters
                bytes.concat(
                    "\x01",
                    encodedListLength,
                    encodedFixedLengthParams,
                    encodedDataLength,
                    _transaction.data,
                    encodedAccessListLength
                )
            );
    }

    /// @notice Encode hash of the EIP1559 transaction type.
    /// @return keccak256 of the serialized RLP encoded representation of transaction
    function _encodeHashEIP1559Transaction(Transaction calldata _transaction) private view returns (bytes32) {
        // Hash of EIP1559 transactions is encoded the following way:
        // H(0x02 || RLP(chain_id, nonce, max_priority_fee_per_gas, max_fee_per_gas, gas_limit, destination, amount, data, access_list))
        //
        // Note, that on zkSync access lists are not supported and should always be empty.

        // Encode all fixed-length params to avoid "stack too deep error"
        bytes memory encodedFixedLengthParams;
        {
            bytes memory encodedChainId = RLPEncoder.encodeUint256(block.chainid);
            bytes memory encodedNonce = RLPEncoder.encodeUint256(_transaction.nonce);
            bytes memory encodedMaxPriorityFeePerGas = RLPEncoder.encodeUint256(_transaction.maxPriorityFeePerGas);
            bytes memory encodedMaxFeePerGas = RLPEncoder.encodeUint256(_transaction.maxFeePerGas);
            bytes memory encodedGasLimit = RLPEncoder.encodeUint256(_transaction.gasLimit);
            bytes memory encodedTo = RLPEncoder.encodeAddress(address(uint160(_transaction.to)));
            bytes memory encodedValue = RLPEncoder.encodeUint256(_transaction.value);
            // solhint-disable-next-line func-named-parameters
            encodedFixedLengthParams = bytes.concat(
                encodedChainId,
                encodedNonce,
                encodedMaxPriorityFeePerGas,
                encodedMaxFeePerGas,
                encodedGasLimit,
                encodedTo,
                encodedValue
            );
        }

        // Encode only the length of the transaction data, and not the data itself,
        // so as not to copy to memory a potentially huge transaction data twice.
        bytes memory encodedDataLength;
        {
            // Safe cast, because the length of the transaction data can't be so large.
            uint64 txDataLen = uint64(_transaction.data.length);
            if (txDataLen != 1) {
                // If the length is not equal to one, then only using the length can it be encoded definitely.
                encodedDataLength = RLPEncoder.encodeNonSingleBytesLen(txDataLen);
            } else if (_transaction.data[0] >= 0x80) {
                // If input is a byte in [0x80, 0xff] range, RLP encoding will concatenates 0x81 with the byte.
                encodedDataLength = hex"81";
            }
            // Otherwise the length is not encoded at all.
        }

        // On zkSync, access lists are always zero length (at least for now).
        bytes memory encodedAccessListLength = RLPEncoder.encodeListLen(0);

        bytes memory encodedListLength;
        unchecked {
            uint256 listLength = encodedFixedLengthParams.length +
                encodedDataLength.length +
                _transaction.data.length +
                encodedAccessListLength.length;

            // Safe cast, because the length of the list can't be so large.
            encodedListLength = RLPEncoder.encodeListLen(uint64(listLength));
        }

        return
            keccak256(
                // solhint-disable-next-line func-named-parameters
                bytes.concat(
                    "\x02",
                    encodedListLength,
                    encodedFixedLengthParams,
                    encodedDataLength,
                    _transaction.data,
                    encodedAccessListLength
                )
            );
    }

    /// @notice Processes the common paymaster flows, e.g. setting proper allowance
    /// for tokens, etc. For more information on the expected behavior, check out
    /// the "Paymaster flows" section in the documentation.
    function processPaymasterInput(Transaction calldata _transaction) internal {
        require(_transaction.paymasterInput.length >= 4, "The standard paymaster input must be at least 4 bytes long");

        bytes4 paymasterInputSelector = bytes4(_transaction.paymasterInput[0:4]);
        if (paymasterInputSelector == IPaymasterFlow.approvalBased.selector) {
            require(
                _transaction.paymasterInput.length >= 68,
                "The approvalBased paymaster input must be at least 68 bytes long"
            );

            // While the actual data consists of address, uint256 and bytes data,
            // the data is needed only for the paymaster, so we ignore it here for the sake of optimization
            (address token, uint256 minAllowance) = abi.decode(_transaction.paymasterInput[4:68], (address, uint256));
            address paymaster = address(uint160(_transaction.paymaster));

            uint256 currentAllowance = IERC20(token).allowance(address(this), paymaster);
            if (currentAllowance < minAllowance) {
                // Some tokens, e.g. USDT require that the allowance is firsty set to zero
                // and only then updated to the new value.

                IERC20(token).safeApprove(paymaster, 0);
                IERC20(token).safeApprove(paymaster, minAllowance);
            }
        } else if (paymasterInputSelector == IPaymasterFlow.general.selector) {
            // Do nothing. general(bytes) paymaster flow means that the paymaster must interpret these bytes on his own.
        } else {
            revert("Unsupported paymaster flow");
        }
    }

    /// @notice Pays the required fee for the transaction to the bootloader.
    /// @dev Currently it pays the maximum amount "_transaction.maxFeePerGas * _transaction.gasLimit",
    /// it will change in the future.
    function payToTheBootloader(Transaction calldata _transaction) internal returns (bool success) {
        address bootloaderAddr = BOOTLOADER_FORMAL_ADDRESS;
        uint256 amount = _transaction.maxFeePerGas * _transaction.gasLimit;

        assembly {
            success := call(gas(), bootloaderAddr, amount, 0, 0, 0, 0)
        }
    }

    // Returns the balance required to process the transaction.
    function totalRequiredBalance(Transaction calldata _transaction) internal pure returns (uint256 requiredBalance) {
        if (address(uint160(_transaction.paymaster)) != address(0)) {
            // Paymaster pays for the fee
            requiredBalance = _transaction.value;
        } else {
            // The user should have enough balance for both the fee and the value of the transaction
            requiredBalance = _transaction.maxFeePerGas * _transaction.gasLimit + _transaction.value;
        }
    }
}

File 20 of 27 : Utils.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import {EfficientCall} from "./EfficientCall.sol";

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @dev Common utilities used in zkSync system contracts
 */
library Utils {
    /// @dev Bit mask of bytecode hash "isConstructor" marker
    bytes32 constant IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK =
        0x00ff000000000000000000000000000000000000000000000000000000000000;

    /// @dev Bit mask to set the "isConstructor" marker in the bytecode hash
    bytes32 constant SET_IS_CONSTRUCTOR_MARKER_BIT_MASK =
        0x0001000000000000000000000000000000000000000000000000000000000000;

    function safeCastToU128(uint256 _x) internal pure returns (uint128) {
        require(_x <= type(uint128).max, "Overflow");

        return uint128(_x);
    }

    function safeCastToU32(uint256 _x) internal pure returns (uint32) {
        require(_x <= type(uint32).max, "Overflow");

        return uint32(_x);
    }

    function safeCastToU24(uint256 _x) internal pure returns (uint24) {
        require(_x <= type(uint24).max, "Overflow");

        return uint24(_x);
    }

    /// @return codeLength The bytecode length in bytes
    function bytecodeLenInBytes(bytes32 _bytecodeHash) internal pure returns (uint256 codeLength) {
        codeLength = bytecodeLenInWords(_bytecodeHash) << 5; // _bytecodeHash * 32
    }

    /// @return codeLengthInWords The bytecode length in machine words
    function bytecodeLenInWords(bytes32 _bytecodeHash) internal pure returns (uint256 codeLengthInWords) {
        unchecked {
            codeLengthInWords = uint256(uint8(_bytecodeHash[2])) * 256 + uint256(uint8(_bytecodeHash[3]));
        }
    }

    /// @notice Denotes whether bytecode hash corresponds to a contract that already constructed
    function isContractConstructed(bytes32 _bytecodeHash) internal pure returns (bool) {
        return _bytecodeHash[1] == 0x00;
    }

    /// @notice Denotes whether bytecode hash corresponds to a contract that is on constructor or has already been constructed
    function isContractConstructing(bytes32 _bytecodeHash) internal pure returns (bool) {
        return _bytecodeHash[1] == 0x01;
    }

    /// @notice Sets "isConstructor" flag to TRUE for the bytecode hash
    /// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag
    /// @return The bytecode hash with "isConstructor" flag set to TRUE
    function constructingBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) {
        // Clear the "isConstructor" marker and set it to 0x01.
        return constructedBytecodeHash(_bytecodeHash) | SET_IS_CONSTRUCTOR_MARKER_BIT_MASK;
    }

    /// @notice Sets "isConstructor" flag to FALSE for the bytecode hash
    /// @param _bytecodeHash The bytecode hash for which it is needed to set the constructing flag
    /// @return The bytecode hash with "isConstructor" flag set to FALSE
    function constructedBytecodeHash(bytes32 _bytecodeHash) internal pure returns (bytes32) {
        return _bytecodeHash & ~IS_CONSTRUCTOR_BYTECODE_HASH_BIT_MASK;
    }

    /// @notice Validate the bytecode format and calculate its hash.
    /// @param _bytecode The bytecode to hash.
    /// @return hashedBytecode The 32-byte hash of the bytecode.
    /// Note: The function reverts the execution if the bytecode has non expected format:
    /// - Bytecode bytes length is not a multiple of 32
    /// - Bytecode bytes length is not less than 2^21 bytes (2^16 words)
    /// - Bytecode words length is not odd
    function hashL2Bytecode(bytes calldata _bytecode) internal view returns (bytes32 hashedBytecode) {
        // Note that the length of the bytecode must be provided in 32-byte words.
        require(_bytecode.length % 32 == 0, "po");

        uint256 lengthInWords = _bytecode.length / 32;
        require(lengthInWords < 2 ** 16, "pp"); // bytecode length must be less than 2^16 words
        require(lengthInWords % 2 == 1, "pr"); // bytecode length in words must be odd
        hashedBytecode =
            EfficientCall.sha(_bytecode) &
            0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        // Setting the version of the hash
        hashedBytecode = (hashedBytecode | bytes32(uint256(1 << 248)));
        // Setting the length
        hashedBytecode = hashedBytecode | bytes32(lengthInWords << 224);
    }
}

File 21 of 27 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 22 of 27 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(
            token,
            abi.encodeWithSelector(token.transfer.selector, to, value)
        );
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(
            token,
            abi.encodeWithSelector(token.transferFrom.selector, from, to, value)
        );
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(
            token,
            abi.encodeWithSelector(token.approve.selector, spender, value)
        );
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(
            token,
            abi.encodeWithSelector(
                token.approve.selector,
                spender,
                newAllowance
            )
        );
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(
                oldAllowance >= value,
                "SafeERC20: decreased allowance below zero"
            );
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(
                token,
                abi.encodeWithSelector(
                    token.approve.selector,
                    spender,
                    newAllowance
                )
            );
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit({owner: owner, spender: spender, value: value, deadline : deadline, v: v, r: r, s: s});
        uint256 nonceAfter = token.nonces(owner);
        require(
            nonceAfter == nonceBefore + 1,
            "SafeERC20: permit did not succeed"
        );
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(
            data,
            "SafeERC20: low-level call failed"
        );
        if (returndata.length > 0) {
            // Return data is optional
            require(
                abi.decode(returndata, (bool)),
                "SafeERC20: ERC20 operation did not succeed"
            );
        }
    }
}

File 23 of 27 : IPaymasterFlow.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

/**
 * @author Matter Labs
 * @dev The interface that is used for encoding/decoding of
 * different types of paymaster flows.
 * @notice This is NOT an interface to be implemented
 * by contracts. It is just used for encoding.
 */
interface IPaymasterFlow {
    function general(bytes calldata input) external;

    function approvalBased(address _token, uint256 _minAllowance, bytes calldata _innerInput) external;
}

File 24 of 27 : RLPEncoder.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice This library provides RLP encoding functionality.
 */
library RLPEncoder {
    function encodeAddress(address _val) internal pure returns (bytes memory encoded) {
        // The size is equal to 20 bytes of the address itself + 1 for encoding bytes length in RLP.
        encoded = new bytes(0x15);

        bytes20 shiftedVal = bytes20(_val);
        assembly {
            // In the first byte we write the encoded length as 0x80 + 0x14 == 0x94.
            mstore(add(encoded, 0x20), 0x9400000000000000000000000000000000000000000000000000000000000000)
            // Write address data without stripping zeros.
            mstore(add(encoded, 0x21), shiftedVal)
        }
    }

    function encodeUint256(uint256 _val) internal pure returns (bytes memory encoded) {
        unchecked {
            if (_val < 128) {
                encoded = new bytes(1);
                // Handle zero as a non-value, since stripping zeroes results in an empty byte array
                encoded[0] = (_val == 0) ? bytes1(uint8(128)) : bytes1(uint8(_val));
            } else {
                uint256 hbs = _highestByteSet(_val);

                encoded = new bytes(hbs + 2);
                encoded[0] = bytes1(uint8(hbs + 0x81));

                uint256 lbs = 31 - hbs;
                uint256 shiftedVal = _val << (lbs * 8);

                assembly {
                    mstore(add(encoded, 0x21), shiftedVal)
                }
            }
        }
    }

    /// @notice Encodes the size of bytes in RLP format.
    /// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported.
    /// NOTE: panics if the length is 1 since the length encoding is ambiguous in this case.
    function encodeNonSingleBytesLen(uint64 _len) internal pure returns (bytes memory) {
        assert(_len != 1);
        return _encodeLength(_len, 0x80);
    }

    /// @notice Encodes the size of list items in RLP format.
    /// @param _len The length of the bytes to encode. It has a `uint64` type since as larger values are not supported.
    function encodeListLen(uint64 _len) internal pure returns (bytes memory) {
        return _encodeLength(_len, 0xc0);
    }

    function _encodeLength(uint64 _len, uint256 _offset) private pure returns (bytes memory encoded) {
        unchecked {
            if (_len < 56) {
                encoded = new bytes(1);
                encoded[0] = bytes1(uint8(_len + _offset));
            } else {
                uint256 hbs = _highestByteSet(uint256(_len));

                encoded = new bytes(hbs + 2);
                encoded[0] = bytes1(uint8(_offset + hbs + 56));

                uint256 lbs = 31 - hbs;
                uint256 shiftedVal = uint256(_len) << (lbs * 8);

                assembly {
                    mstore(add(encoded, 0x21), shiftedVal)
                }
            }
        }
    }

    /// @notice Computes the index of the highest byte set in number.
    /// @notice Uses little endian ordering (The least significant byte has index `0`).
    /// NOTE: returns `0` for `0`
    function _highestByteSet(uint256 _number) private pure returns (uint256 hbs) {
        unchecked {
            if (_number > type(uint128).max) {
                _number >>= 128;
                hbs += 16;
            }
            if (_number > type(uint64).max) {
                _number >>= 64;
                hbs += 8;
            }
            if (_number > type(uint32).max) {
                _number >>= 32;
                hbs += 4;
            }
            if (_number > type(uint16).max) {
                _number >>= 16;
                hbs += 2;
            }
            if (_number > type(uint8).max) {
                hbs += 1;
            }
        }
    }
}

File 25 of 27 : EfficientCall.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.20;

import {SystemContractHelper, ADDRESS_MASK} from "./SystemContractHelper.sol";
import {SystemContractsCaller, CalldataForwardingMode, RAW_FAR_CALL_BY_REF_CALL_ADDRESS, SYSTEM_CALL_BY_REF_CALL_ADDRESS, MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT, MIMIC_CALL_BY_REF_CALL_ADDRESS} from "./SystemContractsCaller.sol";
import {Utils} from "./Utils.sol";
import {SHA256_SYSTEM_CONTRACT, KECCAK256_SYSTEM_CONTRACT, MSG_VALUE_SYSTEM_CONTRACT} from "../Constants.sol";

/**
 * @author Matter Labs
 * @custom:security-contact [email protected]
 * @notice This library is used to perform ultra-efficient calls using zkEVM-specific features.
 * @dev EVM calls always accept a memory slice as input and return a memory slice as output.
 * Therefore, even if the user has a ready-made calldata slice, they still need to copy it to memory
 * before calling. This is especially inefficient for large inputs (proxies, multi-calls, etc.).
 * In turn, zkEVM operates over a fat pointer, which is a set of (memory page, offset, start, length) in the memory/calldata/returndata.
 * This allows forwarding the calldata slice as is, without copying it to memory.
 * @dev Fat pointer is not just an integer, it is an extended data type supported on the VM level.
 * zkEVM creates the wellformed fat pointers for all the calldata/returndata regions, later
 * the contract may manipulate the already created fat pointers to forward a slice of the data, but not
 * to create new fat pointers!
 * @dev The allowed operation on fat pointers are:
 * 1. `ptr.add` - Transforms `ptr.offset` into `ptr.offset + u32(_value)`. If overflow happens then it panics.
 * 2. `ptr.sub` - Transforms `ptr.offset` into `ptr.offset - u32(_value)`. If underflow happens then it panics.
 * 3. `ptr.pack` - Do the concatenation between the lowest 128 bits of the pointer itself and the highest 128 bits of `_value`. It is typically used to prepare the ABI for external calls.
 * 4. `ptr.shrink` - Transforms `ptr.length` into `ptr.length - u32(_shrink)`. If underflow happens then it panics.
 * @dev The call opcodes accept the fat pointer and change it to its canonical form before passing it to the child call
 * 1. `ptr.start` is transformed into `ptr.offset + ptr.start`
 * 2. `ptr.length` is transformed into `ptr.length - ptr.offset`
 * 3. `ptr.offset` is transformed into `0`
 */
library EfficientCall {
    /// @notice Call the `keccak256` without copying calldata to memory.
    /// @param _data The preimage data.
    /// @return The `keccak256` hash.
    function keccak(bytes calldata _data) internal view returns (bytes32) {
        bytes memory returnData = staticCall(gasleft(), KECCAK256_SYSTEM_CONTRACT, _data);
        require(returnData.length == 32, "keccak256 returned invalid data");
        return bytes32(returnData);
    }

    /// @notice Call the `sha256` precompile without copying calldata to memory.
    /// @param _data The preimage data.
    /// @return The `sha256` hash.
    function sha(bytes calldata _data) internal view returns (bytes32) {
        bytes memory returnData = staticCall(gasleft(), SHA256_SYSTEM_CONTRACT, _data);
        require(returnData.length == 32, "sha returned invalid data");
        return bytes32(returnData);
    }

    /// @notice Perform a `call` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _value The `msg.value` to send.
    /// @param _data The calldata to use for the call.
    /// @param _isSystem Whether the call should contain the `isSystem` flag.
    /// @return returnData The copied to memory return data.
    function call(
        uint256 _gas,
        address _address,
        uint256 _value,
        bytes calldata _data,
        bool _isSystem
    ) internal returns (bytes memory returnData) {
        bool success = rawCall({_gas: _gas, _address: _address, _value: _value, _data: _data, _isSystem: _isSystem});
        returnData = _verifyCallResult(success);
    }

    /// @notice Perform a `staticCall` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @return returnData The copied to memory return data.
    function staticCall(
        uint256 _gas,
        address _address,
        bytes calldata _data
    ) internal view returns (bytes memory returnData) {
        bool success = rawStaticCall(_gas, _address, _data);
        returnData = _verifyCallResult(success);
    }

    /// @notice Perform a `delegateCall` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @return returnData The copied to memory return data.
    function delegateCall(
        uint256 _gas,
        address _address,
        bytes calldata _data
    ) internal returns (bytes memory returnData) {
        bool success = rawDelegateCall(_gas, _address, _data);
        returnData = _verifyCallResult(success);
    }

    /// @notice Perform a `mimicCall` (a call with custom msg.sender) without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @param _whoToMimic The `msg.sender` for the next call.
    /// @param _isConstructor Whether the call should contain the `isConstructor` flag.
    /// @param _isSystem Whether the call should contain the `isSystem` flag.
    /// @return returnData The copied to memory return data.
    function mimicCall(
        uint256 _gas,
        address _address,
        bytes calldata _data,
        address _whoToMimic,
        bool _isConstructor,
        bool _isSystem
    ) internal returns (bytes memory returnData) {
        bool success = rawMimicCall({
            _gas: _gas,
            _address: _address,
            _data: _data,
            _whoToMimic: _whoToMimic,
            _isConstructor: _isConstructor,
            _isSystem: _isSystem
        });

        returnData = _verifyCallResult(success);
    }

    /// @notice Perform a `call` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _value The `msg.value` to send.
    /// @param _data The calldata to use for the call.
    /// @param _isSystem Whether the call should contain the `isSystem` flag.
    /// @return success whether the call was successful.
    function rawCall(
        uint256 _gas,
        address _address,
        uint256 _value,
        bytes calldata _data,
        bool _isSystem
    ) internal returns (bool success) {
        if (_value == 0) {
            _loadFarCallABIIntoActivePtr(_gas, _data, false, _isSystem);

            address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
            assembly {
                success := call(_address, callAddr, 0, 0, 0xFFFF, 0, 0)
            }
        } else {
            _loadFarCallABIIntoActivePtr(_gas, _data, false, true);

            // If there is provided `msg.value` call the `MsgValueSimulator` to forward ether.
            address msgValueSimulator = MSG_VALUE_SYSTEM_CONTRACT;
            address callAddr = SYSTEM_CALL_BY_REF_CALL_ADDRESS;
            // We need to supply the mask to the MsgValueSimulator to denote
            // that the call should be a system one.
            uint256 forwardMask = _isSystem ? MSG_VALUE_SIMULATOR_IS_SYSTEM_BIT : 0;

            assembly {
                success := call(msgValueSimulator, callAddr, _value, _address, 0xFFFF, forwardMask, 0)
            }
        }
    }

    /// @notice Perform a `staticCall` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @return success whether the call was successful.
    function rawStaticCall(uint256 _gas, address _address, bytes calldata _data) internal view returns (bool success) {
        _loadFarCallABIIntoActivePtr(_gas, _data, false, false);

        address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
        assembly {
            success := staticcall(_address, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Perform a `delegatecall` without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @return success whether the call was successful.
    function rawDelegateCall(uint256 _gas, address _address, bytes calldata _data) internal returns (bool success) {
        _loadFarCallABIIntoActivePtr(_gas, _data, false, false);

        address callAddr = RAW_FAR_CALL_BY_REF_CALL_ADDRESS;
        assembly {
            success := delegatecall(_address, callAddr, 0, 0xFFFF, 0, 0)
        }
    }

    /// @notice Perform a `mimicCall` (call with custom msg.sender) without copying calldata to memory.
    /// @param _gas The gas to use for the call.
    /// @param _address The address to call.
    /// @param _data The calldata to use for the call.
    /// @param _whoToMimic The `msg.sender` for the next call.
    /// @param _isConstructor Whether the call should contain the `isConstructor` flag.
    /// @param _isSystem Whether the call should contain the `isSystem` flag.
    /// @return success whether the call was successful.
    /// @dev If called not in kernel mode, it will result in a revert (enforced by the VM)
    function rawMimicCall(
        uint256 _gas,
        address _address,
        bytes calldata _data,
        address _whoToMimic,
        bool _isConstructor,
        bool _isSystem
    ) internal returns (bool success) {
        _loadFarCallABIIntoActivePtr(_gas, _data, _isConstructor, _isSystem);

        address callAddr = MIMIC_CALL_BY_REF_CALL_ADDRESS;
        uint256 cleanupMask = ADDRESS_MASK;
        assembly {
            // Clearing values before usage in assembly, since Solidity
            // doesn't do it by default
            _whoToMimic := and(_whoToMimic, cleanupMask)

            success := call(_address, callAddr, 0, 0, _whoToMimic, 0, 0)
        }
    }

    /// @dev Verify that a low-level call was successful, and revert if it wasn't, by bubbling the revert reason.
    /// @param _success Whether the call was successful.
    /// @return returnData The copied to memory return data.
    function _verifyCallResult(bool _success) private pure returns (bytes memory returnData) {
        if (_success) {
            uint256 size;
            assembly {
                size := returndatasize()
            }

            returnData = new bytes(size);
            assembly {
                returndatacopy(add(returnData, 0x20), 0, size)
            }
        } else {
            propagateRevert();
        }
    }

    /// @dev Propagate the revert reason from the current call to the caller.
    function propagateRevert() internal pure {
        assembly {
            let size := returndatasize()
            returndatacopy(0, 0, size)
            revert(0, size)
        }
    }

    /// @dev Load the far call ABI into active ptr, that will be used for the next call by reference.
    /// @param _gas The gas to be passed to the call.
    /// @param _data The calldata to be passed to the call.
    /// @param _isConstructor Whether the call is a constructor call.
    /// @param _isSystem Whether the call is a system call.
    function _loadFarCallABIIntoActivePtr(
        uint256 _gas,
        bytes calldata _data,
        bool _isConstructor,
        bool _isSystem
    ) private view {
        SystemContractHelper.loadCalldataIntoActivePtr();

        uint256 dataOffset;
        assembly {
            dataOffset := _data.offset
        }

        // Safe to cast, offset is never bigger than `type(uint32).max`
        SystemContractHelper.ptrAddIntoActive(uint32(dataOffset));
        // Safe to cast, `data.length` is never bigger than `type(uint32).max`
        uint32 shrinkTo = uint32(msg.data.length - (_data.length + dataOffset));
        SystemContractHelper.ptrShrinkIntoActive(shrinkTo);

        uint32 gas = Utils.safeCastToU32(_gas);
        uint256 farCallAbi = SystemContractsCaller.getFarCallABIWithEmptyFatPointer({
            gasPassed: gas,
            // Only rollup is supported for now
            shardId: 0,
            forwardingMode: CalldataForwardingMode.ForwardFatPointer,
            isConstructorCall: _isConstructor,
            isSystemCall: _isSystem
        });
        SystemContractHelper.ptrPackIntoActivePtr(farCallAbi);
    }
}

File 26 of 27 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 27 of 27 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(
            address(this).balance >= amount,
            "Address: insufficient balance"
        );

        (bool success, ) = recipient.call{value: amount}("");
        require(
            success,
            "Address: unable to send value, recipient may have reverted"
        );
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data)
        internal
        returns (bytes memory)
    {
        return
            functionCallWithValue(
                target,
                data,
                0,
                "Address: low-level call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return
            functionCallWithValue(
                target,
                data,
                value,
                "Address: low-level call with value failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(
            address(this).balance >= value,
            "Address: insufficient balance for call"
        );
        (bool success, bytes memory returndata) = target.call{value: value}(
            data
        );
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data)
        internal
        view
        returns (bytes memory)
    {
        return
            functionStaticCall(
                target,
                data,
                "Address: low-level static call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data)
        internal
        returns (bytes memory)
    {
        return
            functionDelegateCall(
                target,
                data,
                "Address: low-level delegate call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage)
        private
        pure
    {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "mode": "3"
  },
  "outputSelection": {
    "*": {
      "*": [
        "storageLayout",
        "abi",
        "evm.methodIdentifiers",
        "metadata"
      ],
      "": [
        "ast"
      ]
    }
  },
  "evmVersion": "paris",
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Mint","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_l2Sender","type":"address"},{"indexed":true,"internalType":"address","name":"_l1Receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"Withdrawal","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_l2Sender","type":"address"},{"indexed":true,"internalType":"address","name":"_l1Receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"_additionalData","type":"bytes"}],"name":"WithdrawalWithMessage","type":"event"},{"inputs":[{"internalType":"uint256","name":"_account","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"_account","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"transferFromTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_l1Receiver","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_l1Receiver","type":"address"},{"internalType":"bytes","name":"_additionalData","type":"bytes"}],"name":"withdrawWithMessage","outputs":[],"stateMutability":"payable","type":"function"}]

00050000000000020000008003000039000000400030043f00000000030100190000006003300270000000d8033001970000000102200190000000240000c13d000000040230008c0000030b0000413d000000000201043b000000e002200270000000da0420009c0000002c0000a13d000000db0420009c000000380000a13d000000dc0420009c000000b20000613d000000dd0420009c000002040000613d000000de0220009c0000030b0000c13d0000000002000416000000000202004b0000030b0000c13d000000040230008a000000200220008c0000030b0000413d0000000401100370000000000101043b000000e6011001970000000000100435000000200000043f00000000010000190359033d0000040f000000360000013d0000000001000416000000000101004b0000030b0000c13d000000200100003900000100001004430000012000000443000000d9010000410000035a0001042e000000e10420009c0000007a0000213d000000e40120009c000001c20000613d000000e50120009c0000030b0000c13d0000000001000416000000000101004b0000030b0000c13d0000000101000039000000000101041a000002010000013d000000df0420009c000001cb0000613d000000e00220009c0000030b0000c13d0000000002000416000000000202004b0000030b0000c13d000000040230008a000000600220008c0000030b0000413d0000000402100370000000000402043b000000e60240009c0000030b0000213d0000002402100370000000000202043b000000e605200197000000e60220009c0000030b0000213d0000004401100370000000000101043b000400000001001d0000000001000411000080010210008c000000550000613d000080060210008c000000550000613d000080090110008c000002940000c13d0000000000400435000000200000043f000000d8010000410000000002000414000000d80320009c0000000002018019000000c001200210000000ec011001c70000801002000039000500000004001d000300000005001d035903540000040f000000050300002900000001022001900000030b0000613d000000000101043b000000000201041a000000040120006c000002c30000813d000000400100043d0000004402100039000000f303000041000000000032043500000024021000390000001f030000390000000000320435000000f4020000410000000000210435000000040210003900000020030000390000000000320435000000d802000041000000d80310009c00000000010280190000004001100210000000f5011001c70000035b00010430000000e20420009c000001fd0000613d000000e30220009c0000030b0000c13d0000000002000416000000000202004b0000030b0000c13d000000040230008a000000400220008c0000030b0000413d0000000402100370000000000402043b000000e60240009c0000030b0000213d0000002401100370000000000501043b0000000001000411000080010110008c000002190000c13d0000000101000039000000000301041a0000000002530019000000000332004b000000000300001900000001030040390000000103300190000000ae0000c13d000400000005001d000000000021041b0000000000400435000000200000043f000000d8010000410000000002000414000000d80320009c0000000002018019000000c001200210000000ec011001c70000801002000039000500000004001d035903540000040f000000050500002900000001022001900000030b0000613d000000000101043b000000000301041a00000004040000290000000002430019000000000332004b000000000300001900000001030040390000000103300190000002f60000613d000000fb0100004100000000001004350000001101000039000001fa0000013d000000040230008a000000400220008c0000030b0000413d0000000402100370000000000802043b000000e60280009c0000030b0000213d0000002402100370000000000402043b000000ea0240009c0000030b0000213d0000002302400039000000eb05000041000000000632004b00000000060000190000000006058019000000eb02200197000000000702004b0000000005008019000000eb0220009c000000000506c019000000000205004b0000030b0000c13d0000000405400039000000000251034f000000000202043b000000ea0620009c000001f70000213d000000bf06200039000000200900008a000000000696016f000000ea0760009c000001f70000213d000000400060043f000000800020043f00000000042400190000002404400039000000000334004b0000030b0000213d0000002003500039000000000131034f0000001f0320018f0000000504200272000000e70000613d00000000050000190000000506500210000000000761034f000000000707043b000000a00660003900000000007604350000000105500039000000000645004b000000df0000413d000400000009001d000500000008001d000000000503004b000000f80000613d0000000504400210000000000141034f0000000303300210000000a004400039000000000504043300000000053501cf000000000535022f000000000101043b0000010003300089000000000131022f00000000013101cf000000000151019f0000000000140435000000a001200039000000000001043500000000010004100000000000100435000000200000043f000000d8010000410000000002000414000000d80320009c0000000002018019000000c001200210000000ec011001c70000801002000039035903540000040f0000000102200190000000050400002900000004070000290000030b0000613d000000000101043b000000000201041a00000000090004160000000002920049000000000021041b0000000101000039000000000201041a0000000002920049000000000021041b000000ed02000041000000400100043d000000200310003900000000002304350000006002400210000000240310003900000000002304350000000008000411000000600280021000000058031000390000000000230435000000380210003900000000009204350000006c03100039000000800200043d000000000402004b0000012b0000613d00000000040000190000000005340019000000a006400039000000000606043300000000006504350000002004400039000000000524004b000001240000413d000000000332001900000000000304350000004c0320003900000000003104350000008b02200039000000000272016f000000000a12001900000000022a004b00000000020000190000000102004039000000ea03a0009c000001f70000213d0000000102200190000001f70000c13d000100000009001d000200000008001d0000004000a0043f000000ee0200004100000000002a04350000000402a000390000002003000039000000000032043500000000020104330000002403a0003900000000002304350000004403a00039000000000402004b0000014f0000613d000000000400001900000000053400190000002004400039000000000614001900000000060604330000000000650435000000000524004b000001480000413d000000000132001900000000000104350000001f01200039000000000171016f000000d802000041000000d803a0009c000000000302001900000000030a401900000040033002100000004401100039000000d80410009c00000000010280190000006001100210000000000131019f0000000003000414000000d80430009c0000000003028019000000c002300210000000000112019f000080080200003900030000000a001d0359034f0000040f000000030a00002900000000030100190000006003300270000000d803300197000000200430008c000000000403001900000020040080390000001f0540018f0000000506400272000001780000613d0000000007000019000000050870021000000000098a0019000000000881034f000000000808043b00000000008904350000000107700039000000000867004b000001700000413d000000000705004b000001870000613d0000000506600210000000000761034f00000000066a00190000000305500210000000000806043300000000085801cf000000000858022f000000000707043b0000010005500089000000000757022f00000000055701cf000000000585019f000000000056043500000001022001900000030d0000613d0000001f01400039000000600210018f0000000001a20019000000000221004b00000000020000190000000102004039000000ea0410009c0000000504000029000001f70000213d0000000102200190000001f70000c13d000000400010043f000000200230008c0000030b0000413d000000200210003900000040030000390000000000320435000000010200002900000000002104350000004003100039000000800200043d00000000002304350000006003100039000000e606400197000000000402004b000001ab0000613d00000000040000190000000005340019000000a007400039000000000707043300000000007504350000002004400039000000000524004b000001a40000413d000000000332001900000000000304350000007f02200039000000040220017f000000d803000041000000d80410009c00000000010380190000004001100210000000d80420009c00000000020380190000006002200210000000000112019f0000000002000414000000d80420009c0000000002038019000000c002200210000000000112019f000000ef011001c70000800d020000390000000303000039000000f0040000410000000205000029000003060000013d0000000001000416000000000101004b0000030b0000c13d000000c001000039000000400010043f0000000501000039000000800010043f00000100010000410000020c0000013d000000040230008a000000200220008c0000030b0000413d0000000401100370000000000401043b000000e60140009c0000030b0000213d00000000010004100000000000100435000000200000043f000000d8010000410000000002000414000000d80320009c0000000002018019000000c001200210000000ec011001c70000801002000039000500000004001d035903540000040f000000050400002900000001022001900000030b0000613d000000000101043b000000000201041a00000000050004160000000002520049000000000021041b0000000101000039000000000201041a0000000002520049000000000021041b000000ed02000041000000400100043d000000200310003900000000002304350000006002400210000000240310003900000000002304350000003802000039000000000021043500000038021000390000000000520435000000f90210009c000002230000413d000000fb0100004100000000001004350000004101000039000000040010043f000000fc010000410000035b000104300000000001000416000000000101004b0000030b0000c13d0000001201000039000000800010043f000000e7010000410000035a0001042e0000000001000416000000000101004b0000030b0000c13d000000c001000039000000400010043f0000000301000039000000800010043f000000e801000041000000a00010043f0000002001000039000000c00010043f0000008001000039000000e0020000390359032a0000040f000000c00110008a000000d802000041000000d80310009c00000000010280190000006001100210000000e9011001c70000035a0001042e000000f401000041000000800010043f0000002001000039000000840010043f0000001f01000039000000a40010043f000000fd01000041000000c40010043f000000fe010000410000035b00010430000300000005001d0000006007100039000000400070043f000000ee020000410000000000270435000000640210003900000020030000390000000000320435000000840310003900000000020104330000000000230435000000a403100039000000000402004b000002390000613d000000000400001900000000053400190000002004400039000000000614001900000000060604330000000000650435000000000524004b000002320000413d000000000132001900000000000104350000001f01200039000000200200008a000000000121016f000000d802000041000000d80370009c0000000003020019000000000307401900000040033002100000004401100039000000d80410009c00000000010280190000006001100210000000000131019f0000000003000414000000d80430009c0000000003028019000000c002300210000000000112019f0000800802000039000400000007001d0359034f0000040f000000040a00002900000000030100190000006003300270000000d803300197000000200430008c000000000403001900000020040080390000001f0540018f0000000506400272000002630000613d0000000007000019000000050870021000000000098a0019000000000881034f000000000808043b00000000008904350000000107700039000000000867004b0000025b0000413d000000000705004b000002720000613d0000000506600210000000000761034f00000000066a00190000000305500210000000000806043300000000085801cf000000000858022f000000000707043b0000010005500089000000000757022f00000000055701cf000000000585019f00000000005604350000000102200190000002a00000613d0000001f01400039000000600210018f0000000001a20019000000000221004b00000000020000190000000102004039000000ea0410009c00000005050000290000000304000029000001f70000213d0000000102200190000001f70000c13d000000400010043f000000200230008c0000030b0000413d0000000000410435000000d8020000410000000003000414000000d80430009c0000000003028019000000d80410009c00000000010280190000004001100210000000c002300210000000000112019f000000f1011001c7000000e6065001970000800d0200003900000003030000390000000005000411000000fa04000041000003060000013d000000f401000041000000800010043f0000002001000039000000840010043f0000003e01000039000000a40010043f000000f601000041000000c40010043f000000f701000041000000e40010043f000000f8010000410000035b00010430000000400200043d0000001f0430018f0000000505300272000002ad0000613d000000000600001900000005076002100000000008720019000000000771034f000000000707043b00000000007804350000000106600039000000000756004b000002a50000413d000000000604004b000002bc0000613d0000000505500210000000000151034f00000000055200190000000304400210000000000605043300000000064601cf000000000646022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000161019f0000000000150435000000d801000041000000d80420009c000000000201801900000040012002100000006002300210000000000121019f0000035b00010430000200000002001d0000000000300435000000200000043f000000d8030000410000000001000414000000d80210009c0000000001038019000000c001100210000000ec011001c70000801002000039035903540000040f000000030300002900000001022001900000030b0000613d0000000204000029000000040240006a000000000101043b000000000021041b00000000003004350000000001000414000000d80210009c000000d801008041000000c001100210000000ec011001c70000801002000039035903540000040f0000000306000029000000050500002900000001022001900000030b0000613d000000000101043b000000000201041a00000004030000290000000002320019000000000021041b000000400100043d0000000000310435000000d8020000410000000003000414000000d80430009c0000000003028019000000d80410009c00000000010280190000004001100210000000c002300210000000000112019f000000f1011001c70000800d020000390000000303000039000000f204000041000003060000013d000000000021041b000000400100043d0000000000410435000000d8020000410000000003000414000000d80430009c0000000003028019000000d80410009c00000000010280190000004001100210000000c002300210000000000112019f000000f1011001c70000800d020000390000000203000039000000ff040000410359034f0000040f00000001012001900000030b0000613d00000000010000190000035a0001042e00000000010000190000035b00010430000000400200043d0000001f0430018f00000005053002720000031a0000613d000000000600001900000005076002100000000008720019000000000771034f000000000707043b00000000007804350000000106600039000000000756004b000003120000413d000000000604004b000003290000613d0000000505500210000000000151034f00000000055200190000000304400210000000000605043300000000064601cf000000000646022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000161019f0000000000150435000002bc0000013d00000000030104330000000002320436000000000403004b000003360000613d000000000400001900000000052400190000002004400039000000000614001900000000060604330000000000650435000000000534004b0000032f0000413d000000000123001900000000000104350000001f01300039000000200300008a000000000131016f0000000001120019000000000001042d000000d802000041000000d80310009c00000000010280190000000003000414000000d80430009c0000000003028019000000c0023002100000004001100210000000000121019f000000ec011001c70000801002000039035903540000040f00000001022001900000034d0000613d000000000101043b000000000001042d00000000010000190000035b0001043000000352002104210000000102000039000000000001042d0000000002000019000000000001042d00000357002104230000000102000039000000000001042d0000000002000019000000000001042d00000359000004320000035a0001042e0000035b00010430000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000ffffffff00000002000000000000000000000000000000400000010000000000000000000000000000000000000000000000000000000000000000000000000051cff8d80000000000000000000000000000000000000000000000000000000084bc3eaf0000000000000000000000000000000000000000000000000000000084bc3eb00000000000000000000000000000000000000000000000000000000095d89b41000000000000000000000000000000000000000000000000000000009cc7f7080000000000000000000000000000000000000000000000000000000051cff8d900000000000000000000000000000000000000000000000000000000579952fc00000000000000000000000000000000000000000000000000000000313ce56600000000000000000000000000000000000000000000000000000000313ce5670000000000000000000000000000000000000000000000000000000040c10f190000000000000000000000000000000000000000000000000000000006fdde030000000000000000000000000000000000000000000000000000000018160ddd000000000000000000000000ffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000002000000080000000000000000045544800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c00000000000000000000000000000000000000000000000000000000000000000ffffffffffffffff800000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000400000000000000000000000006c0960f90000000000000000000000000000000000000000000000000000000062f84b24000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000c405fe8958410bbaf0c73b7a0c3e20859e86ca168a4c9b0def9c54d2555a306b0200000000000000000000000000000000000020000000000000000000000000ddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5472616e7366657220616d6f756e7420657863656564732062616c616e63650008c379a00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000640000000000000000000000004f6e6c792073797374656d20636f6e7472616374732077697468207370656369616c206163636573732063616e2063616c6c2074686973206d6574686f6400000000000000000000000000000000000000000084000000800000000000000000000000000000000000000000000000000000000000000000ffffffffffffffa02717ead6b9200dd235aad468c9809ea400fe33ac69b5bfaa6d3e90fc922b63984e487b7100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002400000000000000000000000043616c6c61626c65206f6e6c792062792074686520626f6f746c6f616465720000000000000000000000000000000000000000640000008000000000000000000f6798a560793a54c3bcfe86a93cde1e73087d944c0ea20544137d412139688545746865720000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000b26b4f69bfcbb8156b91d9c063bb66992cefb984c90d25a4c9cfb74e4ca3e720

Deployed Bytecode

0x00050000000000020000008003000039000000400030043f00000000030100190000006003300270000000d8033001970000000102200190000000240000c13d000000040230008c0000030b0000413d000000000201043b000000e002200270000000da0420009c0000002c0000a13d000000db0420009c000000380000a13d000000dc0420009c000000b20000613d000000dd0420009c000002040000613d000000de0220009c0000030b0000c13d0000000002000416000000000202004b0000030b0000c13d000000040230008a000000200220008c0000030b0000413d0000000401100370000000000101043b000000e6011001970000000000100435000000200000043f00000000010000190359033d0000040f000000360000013d0000000001000416000000000101004b0000030b0000c13d000000200100003900000100001004430000012000000443000000d9010000410000035a0001042e000000e10420009c0000007a0000213d000000e40120009c000001c20000613d000000e50120009c0000030b0000c13d0000000001000416000000000101004b0000030b0000c13d0000000101000039000000000101041a000002010000013d000000df0420009c000001cb0000613d000000e00220009c0000030b0000c13d0000000002000416000000000202004b0000030b0000c13d000000040230008a000000600220008c0000030b0000413d0000000402100370000000000402043b000000e60240009c0000030b0000213d0000002402100370000000000202043b000000e605200197000000e60220009c0000030b0000213d0000004401100370000000000101043b000400000001001d0000000001000411000080010210008c000000550000613d000080060210008c000000550000613d000080090110008c000002940000c13d0000000000400435000000200000043f000000d8010000410000000002000414000000d80320009c0000000002018019000000c001200210000000ec011001c70000801002000039000500000004001d000300000005001d035903540000040f000000050300002900000001022001900000030b0000613d000000000101043b000000000201041a000000040120006c000002c30000813d000000400100043d0000004402100039000000f303000041000000000032043500000024021000390000001f030000390000000000320435000000f4020000410000000000210435000000040210003900000020030000390000000000320435000000d802000041000000d80310009c00000000010280190000004001100210000000f5011001c70000035b00010430000000e20420009c000001fd0000613d000000e30220009c0000030b0000c13d0000000002000416000000000202004b0000030b0000c13d000000040230008a000000400220008c0000030b0000413d0000000402100370000000000402043b000000e60240009c0000030b0000213d0000002401100370000000000501043b0000000001000411000080010110008c000002190000c13d0000000101000039000000000301041a0000000002530019000000000332004b000000000300001900000001030040390000000103300190000000ae0000c13d000400000005001d000000000021041b0000000000400435000000200000043f000000d8010000410000000002000414000000d80320009c0000000002018019000000c001200210000000ec011001c70000801002000039000500000004001d035903540000040f000000050500002900000001022001900000030b0000613d000000000101043b000000000301041a00000004040000290000000002430019000000000332004b000000000300001900000001030040390000000103300190000002f60000613d000000fb0100004100000000001004350000001101000039000001fa0000013d000000040230008a000000400220008c0000030b0000413d0000000402100370000000000802043b000000e60280009c0000030b0000213d0000002402100370000000000402043b000000ea0240009c0000030b0000213d0000002302400039000000eb05000041000000000632004b00000000060000190000000006058019000000eb02200197000000000702004b0000000005008019000000eb0220009c000000000506c019000000000205004b0000030b0000c13d0000000405400039000000000251034f000000000202043b000000ea0620009c000001f70000213d000000bf06200039000000200900008a000000000696016f000000ea0760009c000001f70000213d000000400060043f000000800020043f00000000042400190000002404400039000000000334004b0000030b0000213d0000002003500039000000000131034f0000001f0320018f0000000504200272000000e70000613d00000000050000190000000506500210000000000761034f000000000707043b000000a00660003900000000007604350000000105500039000000000645004b000000df0000413d000400000009001d000500000008001d000000000503004b000000f80000613d0000000504400210000000000141034f0000000303300210000000a004400039000000000504043300000000053501cf000000000535022f000000000101043b0000010003300089000000000131022f00000000013101cf000000000151019f0000000000140435000000a001200039000000000001043500000000010004100000000000100435000000200000043f000000d8010000410000000002000414000000d80320009c0000000002018019000000c001200210000000ec011001c70000801002000039035903540000040f0000000102200190000000050400002900000004070000290000030b0000613d000000000101043b000000000201041a00000000090004160000000002920049000000000021041b0000000101000039000000000201041a0000000002920049000000000021041b000000ed02000041000000400100043d000000200310003900000000002304350000006002400210000000240310003900000000002304350000000008000411000000600280021000000058031000390000000000230435000000380210003900000000009204350000006c03100039000000800200043d000000000402004b0000012b0000613d00000000040000190000000005340019000000a006400039000000000606043300000000006504350000002004400039000000000524004b000001240000413d000000000332001900000000000304350000004c0320003900000000003104350000008b02200039000000000272016f000000000a12001900000000022a004b00000000020000190000000102004039000000ea03a0009c000001f70000213d0000000102200190000001f70000c13d000100000009001d000200000008001d0000004000a0043f000000ee0200004100000000002a04350000000402a000390000002003000039000000000032043500000000020104330000002403a0003900000000002304350000004403a00039000000000402004b0000014f0000613d000000000400001900000000053400190000002004400039000000000614001900000000060604330000000000650435000000000524004b000001480000413d000000000132001900000000000104350000001f01200039000000000171016f000000d802000041000000d803a0009c000000000302001900000000030a401900000040033002100000004401100039000000d80410009c00000000010280190000006001100210000000000131019f0000000003000414000000d80430009c0000000003028019000000c002300210000000000112019f000080080200003900030000000a001d0359034f0000040f000000030a00002900000000030100190000006003300270000000d803300197000000200430008c000000000403001900000020040080390000001f0540018f0000000506400272000001780000613d0000000007000019000000050870021000000000098a0019000000000881034f000000000808043b00000000008904350000000107700039000000000867004b000001700000413d000000000705004b000001870000613d0000000506600210000000000761034f00000000066a00190000000305500210000000000806043300000000085801cf000000000858022f000000000707043b0000010005500089000000000757022f00000000055701cf000000000585019f000000000056043500000001022001900000030d0000613d0000001f01400039000000600210018f0000000001a20019000000000221004b00000000020000190000000102004039000000ea0410009c0000000504000029000001f70000213d0000000102200190000001f70000c13d000000400010043f000000200230008c0000030b0000413d000000200210003900000040030000390000000000320435000000010200002900000000002104350000004003100039000000800200043d00000000002304350000006003100039000000e606400197000000000402004b000001ab0000613d00000000040000190000000005340019000000a007400039000000000707043300000000007504350000002004400039000000000524004b000001a40000413d000000000332001900000000000304350000007f02200039000000040220017f000000d803000041000000d80410009c00000000010380190000004001100210000000d80420009c00000000020380190000006002200210000000000112019f0000000002000414000000d80420009c0000000002038019000000c002200210000000000112019f000000ef011001c70000800d020000390000000303000039000000f0040000410000000205000029000003060000013d0000000001000416000000000101004b0000030b0000c13d000000c001000039000000400010043f0000000501000039000000800010043f00000100010000410000020c0000013d000000040230008a000000200220008c0000030b0000413d0000000401100370000000000401043b000000e60140009c0000030b0000213d00000000010004100000000000100435000000200000043f000000d8010000410000000002000414000000d80320009c0000000002018019000000c001200210000000ec011001c70000801002000039000500000004001d035903540000040f000000050400002900000001022001900000030b0000613d000000000101043b000000000201041a00000000050004160000000002520049000000000021041b0000000101000039000000000201041a0000000002520049000000000021041b000000ed02000041000000400100043d000000200310003900000000002304350000006002400210000000240310003900000000002304350000003802000039000000000021043500000038021000390000000000520435000000f90210009c000002230000413d000000fb0100004100000000001004350000004101000039000000040010043f000000fc010000410000035b000104300000000001000416000000000101004b0000030b0000c13d0000001201000039000000800010043f000000e7010000410000035a0001042e0000000001000416000000000101004b0000030b0000c13d000000c001000039000000400010043f0000000301000039000000800010043f000000e801000041000000a00010043f0000002001000039000000c00010043f0000008001000039000000e0020000390359032a0000040f000000c00110008a000000d802000041000000d80310009c00000000010280190000006001100210000000e9011001c70000035a0001042e000000f401000041000000800010043f0000002001000039000000840010043f0000001f01000039000000a40010043f000000fd01000041000000c40010043f000000fe010000410000035b00010430000300000005001d0000006007100039000000400070043f000000ee020000410000000000270435000000640210003900000020030000390000000000320435000000840310003900000000020104330000000000230435000000a403100039000000000402004b000002390000613d000000000400001900000000053400190000002004400039000000000614001900000000060604330000000000650435000000000524004b000002320000413d000000000132001900000000000104350000001f01200039000000200200008a000000000121016f000000d802000041000000d80370009c0000000003020019000000000307401900000040033002100000004401100039000000d80410009c00000000010280190000006001100210000000000131019f0000000003000414000000d80430009c0000000003028019000000c002300210000000000112019f0000800802000039000400000007001d0359034f0000040f000000040a00002900000000030100190000006003300270000000d803300197000000200430008c000000000403001900000020040080390000001f0540018f0000000506400272000002630000613d0000000007000019000000050870021000000000098a0019000000000881034f000000000808043b00000000008904350000000107700039000000000867004b0000025b0000413d000000000705004b000002720000613d0000000506600210000000000761034f00000000066a00190000000305500210000000000806043300000000085801cf000000000858022f000000000707043b0000010005500089000000000757022f00000000055701cf000000000585019f00000000005604350000000102200190000002a00000613d0000001f01400039000000600210018f0000000001a20019000000000221004b00000000020000190000000102004039000000ea0410009c00000005050000290000000304000029000001f70000213d0000000102200190000001f70000c13d000000400010043f000000200230008c0000030b0000413d0000000000410435000000d8020000410000000003000414000000d80430009c0000000003028019000000d80410009c00000000010280190000004001100210000000c002300210000000000112019f000000f1011001c7000000e6065001970000800d0200003900000003030000390000000005000411000000fa04000041000003060000013d000000f401000041000000800010043f0000002001000039000000840010043f0000003e01000039000000a40010043f000000f601000041000000c40010043f000000f701000041000000e40010043f000000f8010000410000035b00010430000000400200043d0000001f0430018f0000000505300272000002ad0000613d000000000600001900000005076002100000000008720019000000000771034f000000000707043b00000000007804350000000106600039000000000756004b000002a50000413d000000000604004b000002bc0000613d0000000505500210000000000151034f00000000055200190000000304400210000000000605043300000000064601cf000000000646022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000161019f0000000000150435000000d801000041000000d80420009c000000000201801900000040012002100000006002300210000000000121019f0000035b00010430000200000002001d0000000000300435000000200000043f000000d8030000410000000001000414000000d80210009c0000000001038019000000c001100210000000ec011001c70000801002000039035903540000040f000000030300002900000001022001900000030b0000613d0000000204000029000000040240006a000000000101043b000000000021041b00000000003004350000000001000414000000d80210009c000000d801008041000000c001100210000000ec011001c70000801002000039035903540000040f0000000306000029000000050500002900000001022001900000030b0000613d000000000101043b000000000201041a00000004030000290000000002320019000000000021041b000000400100043d0000000000310435000000d8020000410000000003000414000000d80430009c0000000003028019000000d80410009c00000000010280190000004001100210000000c002300210000000000112019f000000f1011001c70000800d020000390000000303000039000000f204000041000003060000013d000000000021041b000000400100043d0000000000410435000000d8020000410000000003000414000000d80430009c0000000003028019000000d80410009c00000000010280190000004001100210000000c002300210000000000112019f000000f1011001c70000800d020000390000000203000039000000ff040000410359034f0000040f00000001012001900000030b0000613d00000000010000190000035a0001042e00000000010000190000035b00010430000000400200043d0000001f0430018f00000005053002720000031a0000613d000000000600001900000005076002100000000008720019000000000771034f000000000707043b00000000007804350000000106600039000000000756004b000003120000413d000000000604004b000003290000613d0000000505500210000000000151034f00000000055200190000000304400210000000000605043300000000064601cf000000000646022f000000000101043b0000010004400089000000000141022f00000000014101cf000000000161019f0000000000150435000002bc0000013d00000000030104330000000002320436000000000403004b000003360000613d000000000400001900000000052400190000002004400039000000000614001900000000060604330000000000650435000000000534004b0000032f0000413d000000000123001900000000000104350000001f01300039000000200300008a000000000131016f0000000001120019000000000001042d000000d802000041000000d80310009c00000000010280190000000003000414000000d80430009c0000000003028019000000c0023002100000004001100210000000000121019f000000ec011001c70000801002000039035903540000040f00000001022001900000034d0000613d000000000101043b000000000001042d00000000010000190000035b0001043000000352002104210000000102000039000000000001042d0000000002000019000000000001042d00000357002104230000000102000039000000000001042d0000000002000019000000000001042d00000359000004320000035a0001042e0000035b00010430000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000ffffffff00000002000000000000000000000000000000400000010000000000000000000000000000000000000000000000000000000000000000000000000051cff8d80000000000000000000000000000000000000000000000000000000084bc3eaf0000000000000000000000000000000000000000000000000000000084bc3eb00000000000000000000000000000000000000000000000000000000095d89b41000000000000000000000000000000000000000000000000000000009cc7f7080000000000000000000000000000000000000000000000000000000051cff8d900000000000000000000000000000000000000000000000000000000579952fc00000000000000000000000000000000000000000000000000000000313ce56600000000000000000000000000000000000000000000000000000000313ce5670000000000000000000000000000000000000000000000000000000040c10f190000000000000000000000000000000000000000000000000000000006fdde030000000000000000000000000000000000000000000000000000000018160ddd000000000000000000000000ffffffffffffffffffffffffffffffffffffffff000000000000000000000000000000000000002000000080000000000000000045544800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c00000000000000000000000000000000000000000000000000000000000000000ffffffffffffffff800000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000400000000000000000000000006c0960f90000000000000000000000000000000000000000000000000000000062f84b24000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000c405fe8958410bbaf0c73b7a0c3e20859e86ca168a4c9b0def9c54d2555a306b0200000000000000000000000000000000000020000000000000000000000000ddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5472616e7366657220616d6f756e7420657863656564732062616c616e63650008c379a00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000640000000000000000000000004f6e6c792073797374656d20636f6e7472616374732077697468207370656369616c206163636573732063616e2063616c6c2074686973206d6574686f6400000000000000000000000000000000000000000084000000800000000000000000000000000000000000000000000000000000000000000000ffffffffffffffa02717ead6b9200dd235aad468c9809ea400fe33ac69b5bfaa6d3e90fc922b63984e487b7100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002400000000000000000000000043616c6c61626c65206f6e6c792062792074686520626f6f746c6f616465720000000000000000000000000000000000000000640000008000000000000000000f6798a560793a54c3bcfe86a93cde1e73087d944c0ea20544137d4121396885457468657200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006d79792f4d4f92f90ab0ff8bbcb67a80b934901da8bdb472a2f5e444e360de04

[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.